Cargando…

Optimization Design of the Bending-Vibration Resistance of Magnetorheological Elastomer Carbon Fibre Reinforced Polymer Sandwich Sheets

An optimization design of the bending-vibration resistance of magnetorheological elastomer carbon fibre reinforced polymer sandwich sheets (MECFRPSSs) was studied in this paper. Initially, by adopting the classical laminate theory, the Reddy’s high-order shear deformation theory, the Rayleigh-Ritz m...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Guangbin, Yan, Yangyang, Wang, Wenyu, Li, Zelin, Zhang, Zhengwei, Sun, Zhanbin, Qiao, Zhou, Li, Jinan, Li, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056609/
https://www.ncbi.nlm.nih.gov/pubmed/36984228
http://dx.doi.org/10.3390/ma16062349
Descripción
Sumario:An optimization design of the bending-vibration resistance of magnetorheological elastomer carbon fibre reinforced polymer sandwich sheets (MECFRPSSs) was studied in this paper. Initially, by adopting the classical laminate theory, the Reddy’s high-order shear deformation theory, the Rayleigh-Ritz method, etc., an analytical model of the MECFRPSSs was established to predict both bending and vibration parameters, with the three-point bending forces and a pulse load being considered separately. After the validation of the model was completed, the optimization design work of the MECFRPSSs was conducted based on an optimization model developed, in which the thickness, modulus, and density ratios of magnetorheological elastomer core to carbon fibre reinforced polymer were taken as design variables, and static bending stiffness, the averaged damping, and dynamic stiffness parameters were chosen as objective functions. Subsequently, an artificial bee colony algorithm was adopted to execute single-objective, dual-objective, and multi-objective optimizations to obtain the optimal design parameters of such structures, with the convergence effectiveness being examined in a validation example. It was found that it was hard to improve the bending, damping, and dynamic stiffness behaviours of the structure simultaneously as the values of design variables increased. Some compromised results of design parameters need to be determined, which are based on Pareto-optimal solutions. In further engineering application of the MECFRPSSs, it is suggested to use the corresponding design parameters related to a turning point to better exert their bending-vibration resistance.