Cargando…

Leaching of Copper Concentrate with Iodized Salts in a Saline Acid Medium: Part 1—Effect of Concentrations

One of the main problems in processing chalcopyrite ore with hydrometallurgical methods is its refractoriness, which is due to the formation of a layer that inhibits the contact of the ore with the leaching solution, thus reducing the dissolution rate. The main objective of this paper is to evaluate...

Descripción completa

Detalles Bibliográficos
Autores principales: Castellón, César I., Taboada, María E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056650/
https://www.ncbi.nlm.nih.gov/pubmed/36984191
http://dx.doi.org/10.3390/ma16062312
Descripción
Sumario:One of the main problems in processing chalcopyrite ore with hydrometallurgical methods is its refractoriness, which is due to the formation of a layer that inhibits the contact of the ore with the leaching solution, thus reducing the dissolution rate. The main objective of this paper is to evaluate the leaching potential of iodide ions in copper extraction from chalcopyrite concentrate in an acidic seawater medium. Leaching tests were carried out in glass reactors stirred at 45 °C. Parameters such as iodide salt concentration and acidity were evaluated in ranges of 0–5000 ppm and 0–1.0 M, respectively. According to the results obtained, adding iodide ions to a medium acid enhances the leaching kinetics in the chalcopyrite concentrate, observing that it improves copper extraction at low concentrations of 100 ppm KI compared to high concentrations of 5000 ppm KI. As a result, part of the iodide required to oxidize copper tends to sublimate or is associated with other ions producing iodinated compounds such as CuI. Copper extraction reached 45% within the first 96 h, while at 216 h, it reached an extraction of close to 70% copper. The recovery rate improves at potentials between 600 and 650 mV, while at lower potentials, the copper extraction decreases. The mineral surface was analyzed using SEM/EDS and XRD analyses for the identification of precipitates on the surface, finding porous elemental sulfur and precipitated jarosite. An increase in iodide ions improves the leaching kinetics in the chalcopyrite concentrate, observing that it improves copper extraction at low concentrations of 100 ppm KI compared to high concentrations of 5000 ppm KI. As a result, part of the iodide required to oxidize copper tends to sublimate or is associated with other ions producing iodinated compounds such as CuI. Copper extraction reached 45% within the first 96 h, while at 216 h, it reached an extraction of close to 70% copper. The recovery rate improves at potentials between 600 and 650 mV, while at lower potentials, the copper extraction decreases. The mineral surface was analyzed using SEM/EDS and XRD analyses for the identification of precipitates on the surface, finding porous elemental sulfur and precipitated jarosite.