Cargando…
Integrating Multiple Single-Cell RNA Sequencing Datasets Using Adversarial Autoencoders
Single-cell RNA sequencing (RNA-seq) has been demonstrated to be a proven method for quantifying gene-expression heterogeneity and providing insight into the transcriptome at the single-cell level. When combining multiple single-cell transcriptome datasets for analysis, it is common to first correct...
Autores principales: | Wang, Xun, Zhang, Chaogang, Wang, Lulu, Zheng, Pan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056671/ https://www.ncbi.nlm.nih.gov/pubmed/36982574 http://dx.doi.org/10.3390/ijms24065502 |
Ejemplares similares
-
IMGG: Integrating Multiple Single-Cell Datasets through Connected Graphs and Generative Adversarial Networks
por: Wang, Xun, et al.
Publicado: (2022) -
Con-AAE: contrastive cycle adversarial autoencoders for single-cell multi-omics alignment and integration
por: Wang, Xuesong, et al.
Publicado: (2023) -
A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis
por: Lin, Eugene, et al.
Publicado: (2020) -
iMAP: integration of multiple single-cell datasets by adversarial paired transfer networks
por: Wang, Dongfang, et al.
Publicado: (2021) -
Abnormal ECG detection based on an adversarial autoencoder
por: Shan, Lianfeng, et al.
Publicado: (2022)