Cargando…
Robust Classification and Detection of Big Medical Data Using Advanced Parallel K-Means Clustering, YOLOv4, and Logistic Regression
Big-medical-data classification and image detection are crucial tasks in the field of healthcare, as they can assist with diagnosis, treatment planning, and disease monitoring. Logistic regression and YOLOv4 are popular algorithms that can be used for these tasks. However, these techniques have limi...
Autores principales: | Awad, Fouad H., Hamad, Murtadha M., Alzubaidi, Laith |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056696/ https://www.ncbi.nlm.nih.gov/pubmed/36983845 http://dx.doi.org/10.3390/life13030691 |
Ejemplares similares
-
Classification of COVID19 Patients Using Robust Logistic Regression
por: Ghosh, Abhik, et al.
Publicado: (2022) -
Semi-Parallel logistic regression for GWAS on encrypted data
por: Kim, Miran, et al.
Publicado: (2020) -
Logistic regression vs. predictive mean matching for imputing binary covariates
por: Austin, Peter C, et al.
Publicado: (2023) -
Robust Minimum Divergence Estimation for the Multinomial Circular Logistic Regression Model
por: Castilla, Elena, et al.
Publicado: (2023) -
Privacy-preserving semi-parallel logistic regression training with fully homomorphic encryption
por: Carpov, Sergiu, et al.
Publicado: (2020)