Cargando…
A Novel Image Classification Method Based on Residual Network, Inception, and Proposed Activation Function
In deeper layers, ResNet heavily depends on skip connections and Relu. Although skip connections have demonstrated their usefulness in networks, a major issue arises when the dimensions between layers are not consistent. In such cases, it is necessary to use techniques such as zero-padding or projec...
Autores principales: | Yahya, Ali Abdullah, Liu, Kui, Hawbani, Ammar, Wang, Yibin, Hadi, Ali Naser |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056718/ https://www.ncbi.nlm.nih.gov/pubmed/36991687 http://dx.doi.org/10.3390/s23062976 |
Ejemplares similares
-
Palm tree disease detection and classification using residual network and transfer learning of inception ResNet
por: Ahmed, Mostafa, et al.
Publicado: (2023) -
Three-class brain tumor classification using deep dense inception residual network
por: Kokkalla, Srinath, et al.
Publicado: (2021) -
Convolution neural network with batch normalization and inception-residual modules for Android malware classification
por: Liu, TianYue, et al.
Publicado: (2022) -
DRI-Net: segmentation of polyp in colonoscopy images using dense residual-inception network
por: Lan, Xiaoke, et al.
Publicado: (2023) -
Deep residual inception encoder‐decoder network for amyloid PET harmonization
por: Shah, Jay, et al.
Publicado: (2022)