Cargando…
In-Vitro Evaluation of Photofunctionalized Implant Surfaces in a High-Glucose Microenvironment Simulating Diabetics
The present study aimed to assess the efficacy of photofunctionalization on commercially available dental implant surfaces in a high-glucose environment. Discs of three commercially available implant surfaces were selected with various nano- and microstructural alterations (Group 1—laser-etched impl...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056823/ https://www.ncbi.nlm.nih.gov/pubmed/36976054 http://dx.doi.org/10.3390/jfb14030130 |
_version_ | 1785016217601310720 |
---|---|
author | Kheur, Supriya Kheur, Mohit Madiwal, Vaibhav Sandhu, Ramandeep Lakha, Tabrez Rajwade, Jyutika Eyüboğlu, Tan Fırat Özcan, Mutlu |
author_facet | Kheur, Supriya Kheur, Mohit Madiwal, Vaibhav Sandhu, Ramandeep Lakha, Tabrez Rajwade, Jyutika Eyüboğlu, Tan Fırat Özcan, Mutlu |
author_sort | Kheur, Supriya |
collection | PubMed |
description | The present study aimed to assess the efficacy of photofunctionalization on commercially available dental implant surfaces in a high-glucose environment. Discs of three commercially available implant surfaces were selected with various nano- and microstructural alterations (Group 1—laser-etched implant surface, Group 2—titanium–zirconium alloy surface, Group 3—air-abraded, large grit, acid-etched surface). They were subjected to photo-functionalization through UV irradiation for 60 and 90 min. X-ray photoelectron spectroscopy (XPS) was used to analyze the implant surface chemical composition before and after photo-functionalization. The growth and bioactivity of MG63 osteoblasts in the presence of photofunctionalized discs was assessed in cell culture medium containing elevated glucose concentration. The normal osteoblast morphology and spreading behavior were assessed under fluorescence and phase-contrast microscope. MTT (3-(4,5 Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and alizarin red assay were performed to assess the osteoblastic cell viability and mineralization efficiency. Following photofunctionalization, all three implant groups exhibited a reduced carbon content, conversion of Ti4+ to Ti3+, increased osteoblastic adhesion, viability, and increased mineralization. The best osteoblastic adhesion in the medium with increased glucose was seen in Group 3. Photofunctionalization altered the implant surface chemistry by reducing the surface carbon content, probably rendering the surfaces more hydrophilic and conducive for osteoblastic adherence and subsequent mineralization in high-glucose environment. |
format | Online Article Text |
id | pubmed-10056823 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100568232023-03-30 In-Vitro Evaluation of Photofunctionalized Implant Surfaces in a High-Glucose Microenvironment Simulating Diabetics Kheur, Supriya Kheur, Mohit Madiwal, Vaibhav Sandhu, Ramandeep Lakha, Tabrez Rajwade, Jyutika Eyüboğlu, Tan Fırat Özcan, Mutlu J Funct Biomater Article The present study aimed to assess the efficacy of photofunctionalization on commercially available dental implant surfaces in a high-glucose environment. Discs of three commercially available implant surfaces were selected with various nano- and microstructural alterations (Group 1—laser-etched implant surface, Group 2—titanium–zirconium alloy surface, Group 3—air-abraded, large grit, acid-etched surface). They were subjected to photo-functionalization through UV irradiation for 60 and 90 min. X-ray photoelectron spectroscopy (XPS) was used to analyze the implant surface chemical composition before and after photo-functionalization. The growth and bioactivity of MG63 osteoblasts in the presence of photofunctionalized discs was assessed in cell culture medium containing elevated glucose concentration. The normal osteoblast morphology and spreading behavior were assessed under fluorescence and phase-contrast microscope. MTT (3-(4,5 Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and alizarin red assay were performed to assess the osteoblastic cell viability and mineralization efficiency. Following photofunctionalization, all three implant groups exhibited a reduced carbon content, conversion of Ti4+ to Ti3+, increased osteoblastic adhesion, viability, and increased mineralization. The best osteoblastic adhesion in the medium with increased glucose was seen in Group 3. Photofunctionalization altered the implant surface chemistry by reducing the surface carbon content, probably rendering the surfaces more hydrophilic and conducive for osteoblastic adherence and subsequent mineralization in high-glucose environment. MDPI 2023-02-26 /pmc/articles/PMC10056823/ /pubmed/36976054 http://dx.doi.org/10.3390/jfb14030130 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kheur, Supriya Kheur, Mohit Madiwal, Vaibhav Sandhu, Ramandeep Lakha, Tabrez Rajwade, Jyutika Eyüboğlu, Tan Fırat Özcan, Mutlu In-Vitro Evaluation of Photofunctionalized Implant Surfaces in a High-Glucose Microenvironment Simulating Diabetics |
title | In-Vitro Evaluation of Photofunctionalized Implant Surfaces in a High-Glucose Microenvironment Simulating Diabetics |
title_full | In-Vitro Evaluation of Photofunctionalized Implant Surfaces in a High-Glucose Microenvironment Simulating Diabetics |
title_fullStr | In-Vitro Evaluation of Photofunctionalized Implant Surfaces in a High-Glucose Microenvironment Simulating Diabetics |
title_full_unstemmed | In-Vitro Evaluation of Photofunctionalized Implant Surfaces in a High-Glucose Microenvironment Simulating Diabetics |
title_short | In-Vitro Evaluation of Photofunctionalized Implant Surfaces in a High-Glucose Microenvironment Simulating Diabetics |
title_sort | in-vitro evaluation of photofunctionalized implant surfaces in a high-glucose microenvironment simulating diabetics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056823/ https://www.ncbi.nlm.nih.gov/pubmed/36976054 http://dx.doi.org/10.3390/jfb14030130 |
work_keys_str_mv | AT kheursupriya invitroevaluationofphotofunctionalizedimplantsurfacesinahighglucosemicroenvironmentsimulatingdiabetics AT kheurmohit invitroevaluationofphotofunctionalizedimplantsurfacesinahighglucosemicroenvironmentsimulatingdiabetics AT madiwalvaibhav invitroevaluationofphotofunctionalizedimplantsurfacesinahighglucosemicroenvironmentsimulatingdiabetics AT sandhuramandeep invitroevaluationofphotofunctionalizedimplantsurfacesinahighglucosemicroenvironmentsimulatingdiabetics AT lakhatabrez invitroevaluationofphotofunctionalizedimplantsurfacesinahighglucosemicroenvironmentsimulatingdiabetics AT rajwadejyutika invitroevaluationofphotofunctionalizedimplantsurfacesinahighglucosemicroenvironmentsimulatingdiabetics AT eyuboglutanfırat invitroevaluationofphotofunctionalizedimplantsurfacesinahighglucosemicroenvironmentsimulatingdiabetics AT ozcanmutlu invitroevaluationofphotofunctionalizedimplantsurfacesinahighglucosemicroenvironmentsimulatingdiabetics |