Cargando…
Multi-Target Tracking Based on a Combined Attention Mechanism and Occlusion Sensing in a Behavior-Analysis System
Multi-object tracking (MOT) is a topic of great interest in the field of computer vision, which is essential in smart behavior-analysis systems for healthcare, such as human-flow monitoring, crime analysis, and behavior warnings. Most MOT methods achieve stability by combining object-detection and r...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056893/ https://www.ncbi.nlm.nih.gov/pubmed/36991667 http://dx.doi.org/10.3390/s23062956 |
_version_ | 1785016234489675776 |
---|---|
author | Zhou, Xiaolong Chan, Sixian Qiu, Chenhao Jiang, Xiaodan Tang, Tinglong |
author_facet | Zhou, Xiaolong Chan, Sixian Qiu, Chenhao Jiang, Xiaodan Tang, Tinglong |
author_sort | Zhou, Xiaolong |
collection | PubMed |
description | Multi-object tracking (MOT) is a topic of great interest in the field of computer vision, which is essential in smart behavior-analysis systems for healthcare, such as human-flow monitoring, crime analysis, and behavior warnings. Most MOT methods achieve stability by combining object-detection and re-identification networks. However, MOT requires high efficiency and accuracy in complex environments with occlusions and interference. This often increases the algorithm’s complexity, affects the speed of tracking calculations, and reduces real-time performance. In this paper, we present an improved MOT method combining an attention mechanism and occlusion sensing as a solution. A convolutional block attention module (CBAM) calculates the weights of space and channel attention from the feature map. The attention weights are used to fuse the feature maps to extract adaptively robust object representations. An occlusion-sensing module detects an object’s occlusion, and the appearance characteristics of an occluded object are not updated. This can enhance the model’s ability to extract object features and improve appearance feature pollution caused by the short-term occlusion of an object. Experiments on public datasets demonstrate the competitive performance of the proposed method compared with the state-of-the-art MOT methods. The experimental results show that our method has powerful data association capability, e.g., 73.2% MOTA and 73.9% IDF1 on the MOT17 dataset. |
format | Online Article Text |
id | pubmed-10056893 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100568932023-03-30 Multi-Target Tracking Based on a Combined Attention Mechanism and Occlusion Sensing in a Behavior-Analysis System Zhou, Xiaolong Chan, Sixian Qiu, Chenhao Jiang, Xiaodan Tang, Tinglong Sensors (Basel) Article Multi-object tracking (MOT) is a topic of great interest in the field of computer vision, which is essential in smart behavior-analysis systems for healthcare, such as human-flow monitoring, crime analysis, and behavior warnings. Most MOT methods achieve stability by combining object-detection and re-identification networks. However, MOT requires high efficiency and accuracy in complex environments with occlusions and interference. This often increases the algorithm’s complexity, affects the speed of tracking calculations, and reduces real-time performance. In this paper, we present an improved MOT method combining an attention mechanism and occlusion sensing as a solution. A convolutional block attention module (CBAM) calculates the weights of space and channel attention from the feature map. The attention weights are used to fuse the feature maps to extract adaptively robust object representations. An occlusion-sensing module detects an object’s occlusion, and the appearance characteristics of an occluded object are not updated. This can enhance the model’s ability to extract object features and improve appearance feature pollution caused by the short-term occlusion of an object. Experiments on public datasets demonstrate the competitive performance of the proposed method compared with the state-of-the-art MOT methods. The experimental results show that our method has powerful data association capability, e.g., 73.2% MOTA and 73.9% IDF1 on the MOT17 dataset. MDPI 2023-03-08 /pmc/articles/PMC10056893/ /pubmed/36991667 http://dx.doi.org/10.3390/s23062956 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhou, Xiaolong Chan, Sixian Qiu, Chenhao Jiang, Xiaodan Tang, Tinglong Multi-Target Tracking Based on a Combined Attention Mechanism and Occlusion Sensing in a Behavior-Analysis System |
title | Multi-Target Tracking Based on a Combined Attention Mechanism and Occlusion Sensing in a Behavior-Analysis System |
title_full | Multi-Target Tracking Based on a Combined Attention Mechanism and Occlusion Sensing in a Behavior-Analysis System |
title_fullStr | Multi-Target Tracking Based on a Combined Attention Mechanism and Occlusion Sensing in a Behavior-Analysis System |
title_full_unstemmed | Multi-Target Tracking Based on a Combined Attention Mechanism and Occlusion Sensing in a Behavior-Analysis System |
title_short | Multi-Target Tracking Based on a Combined Attention Mechanism and Occlusion Sensing in a Behavior-Analysis System |
title_sort | multi-target tracking based on a combined attention mechanism and occlusion sensing in a behavior-analysis system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056893/ https://www.ncbi.nlm.nih.gov/pubmed/36991667 http://dx.doi.org/10.3390/s23062956 |
work_keys_str_mv | AT zhouxiaolong multitargettrackingbasedonacombinedattentionmechanismandocclusionsensinginabehavioranalysissystem AT chansixian multitargettrackingbasedonacombinedattentionmechanismandocclusionsensinginabehavioranalysissystem AT qiuchenhao multitargettrackingbasedonacombinedattentionmechanismandocclusionsensinginabehavioranalysissystem AT jiangxiaodan multitargettrackingbasedonacombinedattentionmechanismandocclusionsensinginabehavioranalysissystem AT tangtinglong multitargettrackingbasedonacombinedattentionmechanismandocclusionsensinginabehavioranalysissystem |