Cargando…

VORTEX: Network-Driven Opportunistic Routing for Ad Hoc Networks

The potential of ad hoc networks, which enable flexible and dynamic network establishment only by mobile terminals equipped with wireless communication devices, has recently attracted attention for the coming IoT era. Although the nature of ad hoc networks shows the advantages of their autonomous an...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamamoto, Ryo, Yamazaki, Taku, Ohzahata, Satoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056912/
https://www.ncbi.nlm.nih.gov/pubmed/36991603
http://dx.doi.org/10.3390/s23062893
Descripción
Sumario:The potential of ad hoc networks, which enable flexible and dynamic network establishment only by mobile terminals equipped with wireless communication devices, has recently attracted attention for the coming IoT era. Although the nature of ad hoc networks shows the advantages of their autonomous and distributed network management, a manifestation of drawbacks owing to the nature of wireless communication and the mobility of terminals are inevitable. Many routing protocols have already been proposed to address the issues by adapting to nature and achieving a certain level of improvement. However, the routing protocols still suffer from difficulties in information collection for routing and adaptive route management during communication. Moreover, there is another issue that end pair-based routing procedures prevent other end pairs from reusing the routing information effectively. To address the drawbacks of conventional routing protocols, this paper proposes VORTEX, a novel routing protocol that employs an opportunistic routing strategy using hierarchization. One of the characteristic features of VORTEX is its network-driven opportunistic forwarding, in which packets travel toward destination terminals using hierarchy as a guide without conventional route discovery procedures. Moreover, another characteristic feature of VORTEX is that the hierarchical structure also contributes to adapting to communication environment changes in an autonomous manner. In other words, VORTEX enables flexible network-wide information-based routing only with the locally collected information. The simulation results show that the proposed VORTEX could provide better service quality and reliability with improved efficiency compared to the conventional routing protocols. Furthermore, the most significant contribution is not only in the communication performance but also VORTEX omits route discovery or route maintenance from routing protocols, and formed networks themselves have a function to deliver packets toward destination terminals.