Cargando…
Efficient Layer-Wise N:M Sparse CNN Accelerator with Flexible SPEC: Sparse Processing Element Clusters
Recently, the layer-wise N:M fine-grained sparse neural network algorithm (i.e., every M-weights contains N non-zero values) has attracted tremendous attention, as it can effectively reduce the computational complexity with negligible accuracy loss. However, the speed-up potential of this algorithm...
Autores principales: | Xie, Xiaoru, Zhu, Mingyu, Lu, Siyuan, Wang, Zhongfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057003/ https://www.ncbi.nlm.nih.gov/pubmed/36984936 http://dx.doi.org/10.3390/mi14030528 |
Ejemplares similares
-
Deep CNN Sparse Coding for Real Time Inhaler Sounds Classification
por: Ntalianis, Vaggelis, et al.
Publicado: (2020) -
De-Aliasing and Accelerated Sparse Magnetic Resonance Image Reconstruction Using Fully Dense CNN with Attention Gates
por: Hossain, Md. Biddut, et al.
Publicado: (2022) -
Fast and robust group-wise eQTL mapping using sparse graphical models
por: Cheng, Wei, et al.
Publicado: (2015) -
Multi-target drug repositioning by bipartite block-wise sparse multi-task learning
por: Li, Limin, et al.
Publicado: (2018) -
On preconditioning and convergence acceleration in sparse matrix problems
por: Axelsson, O
Publicado: (1974)