Cargando…

Meta-Analysis of the Effects of Biochar Application on the Diversity of Soil Bacteria and Fungi

Biochar is increasingly being used for soil improvement, but the effects on microbial diversity in soil are still ambiguous due to contrasting results reported in the literature. We conducted a meta-analysis to clarify the effect of biochar addition on soil bacterial and fungal diversity with an inc...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Mingyu, Yu, Xiaoying, Weng, Xiaohong, Zeng, Xiannan, Li, Mengsha, Sui, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057247/
https://www.ncbi.nlm.nih.gov/pubmed/36985214
http://dx.doi.org/10.3390/microorganisms11030641
Descripción
Sumario:Biochar is increasingly being used for soil improvement, but the effects on microbial diversity in soil are still ambiguous due to contrasting results reported in the literature. We conducted a meta-analysis to clarify the effect of biochar addition on soil bacterial and fungal diversity with an increase in Shannon or Chao1 index as the outcome. Different experimental setups, quantitative levels of biochar addition, various biochar source materials and preparation temperatures, and the effect of natural precipitation in field experiments were the investigated variables. From a total of 95 publications identified for analysis, 384 datasets for Shannon index and 277 datasets for Chao1 index were extracted that described the bacterial diversity in the soils, of which field experiments and locations in China dominated. The application of biochar in soil significantly increased the diversity of soil bacteria but it had no significant effect on the diversity of fungi. Of the different experimental setups, the largest increase in bacterial diversity was seen for field experiments, followed by pot experiments, but laboratory and greenhouse settings did not report a significant increase. In field experiments, natural precipitation had a strong effect, and biochar increased bacterial diversity most in humid conditions (mean annual precipitation, MAP > 800 mm), followed by semi-arid conditions (MAP 200–400 mm). Biochar prepared from herbaceous materials was more effective to increase bacterial diversity than other raw materials and the optimal pyrolysis temperature was 350–550 °C. Addition of biochar at various levels produced inconclusive data for Chao1 and Shannon indices, and its effect was less strong than that of the other assessed variables.