Cargando…
Correlation between Orientation Spread and Ear Forming of As-Annealed AA5151 Aluminum Alloy
In the present work, we take the influences of activated slip systems and the orientation spread into account to predict the cup height using analytical earing models and compare the predicted results with experimental results. The effect of boundary conditions of the various stress states and the w...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057329/ https://www.ncbi.nlm.nih.gov/pubmed/36984287 http://dx.doi.org/10.3390/ma16062408 |
_version_ | 1785016336567500800 |
---|---|
author | Hsiao, Shih-Chieh Li, Chia-Yu Chang, Chih-I Tseng, Tien-Yu Pan, Yeong-Tsuen Kuo, Jui-Chao |
author_facet | Hsiao, Shih-Chieh Li, Chia-Yu Chang, Chih-I Tseng, Tien-Yu Pan, Yeong-Tsuen Kuo, Jui-Chao |
author_sort | Hsiao, Shih-Chieh |
collection | PubMed |
description | In the present work, we take the influences of activated slip systems and the orientation spread into account to predict the cup height using analytical earing models and compare the predicted results with experimental results. The effect of boundary conditions of the various stress states and the work hardening exponents are compared and discussed for profile of single crystals. A stress ratio of −0.3 and a hardening exponent of 0.3 are selected for the prediction of earing profiles. The combination of activation of the single slip systems and orientation spread provides the best prediction of deep-drawing profiles. With further consideration of the orientation spread, an increase in the total orientation leads to peak-broadening, i.e., broad and smooth ears. Furthermore, the difference of the height between the maximum and minimum value of cup profiles is reduced because of the orientation spread. The profile for C is found with single ear at 45°, while the other components individually reveal double ears at 35° and 50° for S, at 15° and 45° for B, at 0° and 90° for Cube, at 5° and 90° for r-Cube, and at 15° and 90° for G. Herein, simple analytical earing models are proposed to understand the effects of slip systems and the orientation spread. The deep-drawing profiles are predicted with six major texture components. |
format | Online Article Text |
id | pubmed-10057329 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100573292023-03-30 Correlation between Orientation Spread and Ear Forming of As-Annealed AA5151 Aluminum Alloy Hsiao, Shih-Chieh Li, Chia-Yu Chang, Chih-I Tseng, Tien-Yu Pan, Yeong-Tsuen Kuo, Jui-Chao Materials (Basel) Article In the present work, we take the influences of activated slip systems and the orientation spread into account to predict the cup height using analytical earing models and compare the predicted results with experimental results. The effect of boundary conditions of the various stress states and the work hardening exponents are compared and discussed for profile of single crystals. A stress ratio of −0.3 and a hardening exponent of 0.3 are selected for the prediction of earing profiles. The combination of activation of the single slip systems and orientation spread provides the best prediction of deep-drawing profiles. With further consideration of the orientation spread, an increase in the total orientation leads to peak-broadening, i.e., broad and smooth ears. Furthermore, the difference of the height between the maximum and minimum value of cup profiles is reduced because of the orientation spread. The profile for C is found with single ear at 45°, while the other components individually reveal double ears at 35° and 50° for S, at 15° and 45° for B, at 0° and 90° for Cube, at 5° and 90° for r-Cube, and at 15° and 90° for G. Herein, simple analytical earing models are proposed to understand the effects of slip systems and the orientation spread. The deep-drawing profiles are predicted with six major texture components. MDPI 2023-03-17 /pmc/articles/PMC10057329/ /pubmed/36984287 http://dx.doi.org/10.3390/ma16062408 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hsiao, Shih-Chieh Li, Chia-Yu Chang, Chih-I Tseng, Tien-Yu Pan, Yeong-Tsuen Kuo, Jui-Chao Correlation between Orientation Spread and Ear Forming of As-Annealed AA5151 Aluminum Alloy |
title | Correlation between Orientation Spread and Ear Forming of As-Annealed AA5151 Aluminum Alloy |
title_full | Correlation between Orientation Spread and Ear Forming of As-Annealed AA5151 Aluminum Alloy |
title_fullStr | Correlation between Orientation Spread and Ear Forming of As-Annealed AA5151 Aluminum Alloy |
title_full_unstemmed | Correlation between Orientation Spread and Ear Forming of As-Annealed AA5151 Aluminum Alloy |
title_short | Correlation between Orientation Spread and Ear Forming of As-Annealed AA5151 Aluminum Alloy |
title_sort | correlation between orientation spread and ear forming of as-annealed aa5151 aluminum alloy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057329/ https://www.ncbi.nlm.nih.gov/pubmed/36984287 http://dx.doi.org/10.3390/ma16062408 |
work_keys_str_mv | AT hsiaoshihchieh correlationbetweenorientationspreadandearformingofasannealedaa5151aluminumalloy AT lichiayu correlationbetweenorientationspreadandearformingofasannealedaa5151aluminumalloy AT changchihi correlationbetweenorientationspreadandearformingofasannealedaa5151aluminumalloy AT tsengtienyu correlationbetweenorientationspreadandearformingofasannealedaa5151aluminumalloy AT panyeongtsuen correlationbetweenorientationspreadandearformingofasannealedaa5151aluminumalloy AT kuojuichao correlationbetweenorientationspreadandearformingofasannealedaa5151aluminumalloy |