Cargando…

Development of pH-Responsive N-benzyl-N-O-succinyl Chitosan Micelles Loaded with a Curcumin Analog (Cyqualone) for Treatment of Colon Cancer

This work aimed at preparing nanomicelles from N-benzyl-N,O-succinyl chitosan (NBSCh) loaded with a curcumin analog, 2,6-bis((3-methoxy-4-hydroxyphenyl) methylene) cyclohexanone, a.k.a. cyqualone (CL), for antineoplastic colon cancer chemotherapy. The CL-loaded NBSCh micelles were spherical and less...

Descripción completa

Detalles Bibliográficos
Autores principales: Sripetthong, Sasikarn, Eze, Fredrick Nwude, Sajomsang, Warayuth, Ovatlarnporn, Chitchamai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057334/
https://www.ncbi.nlm.nih.gov/pubmed/36985665
http://dx.doi.org/10.3390/molecules28062693
Descripción
Sumario:This work aimed at preparing nanomicelles from N-benzyl-N,O-succinyl chitosan (NBSCh) loaded with a curcumin analog, 2,6-bis((3-methoxy-4-hydroxyphenyl) methylene) cyclohexanone, a.k.a. cyqualone (CL), for antineoplastic colon cancer chemotherapy. The CL-loaded NBSCh micelles were spherical and less than 100 nm in size. The entrapment efficiency of CL in the micelles ranged from 13 to 39%. Drug release from pristine CL was less than 20% in PBS at pH 7.4, whereas the release from CL-NBSCh micelles was significantly higher. The release study of CL-NBSCh revealed that around 40% of CL content was released in simulated gastric fluid at pH 1.2; 79 and 85% in simulated intestinal fluids at pH 5.5 and 6.8, respectively; and 75% in simulated colonic fluid at pH 7.4. CL-NBSCh showed considerably high selective cytotoxicity towards mucosal epithelial human colon cancer (HT-29) cells and lower levels of toxicity towards mouse connective tissue fibroblasts (L929). CL-NBSCh was also more cytotoxic than the free CL. Furthermore, compared to free CL, CL-NBSCh micelles were found to be more efficient at arresting cell growth at the G2/M phase, and induced apoptosis earlier in HT-29 cells. Collectively, these results indicate the high prospective potential of CL-loaded NBSCh micelles as an oral therapeutic intervention for colon cancer.