Cargando…
Effects of Sodium Nitrate and Coated Methionine on Lactation Performance, Rumen Fermentation Characteristics, Amino Acid Metabolism, and Microbial Communities in Lactating Buffaloes
Sodium nitrate is used as a non-protein nitrogen supplement while methionine is considered as a common methionine additive for ruminants. This study investigated the effects of sodium nitrate and coated methionine supplementation on milk yield, milk composition, rumen fermentation parameters, amino...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057408/ https://www.ncbi.nlm.nih.gov/pubmed/36985248 http://dx.doi.org/10.3390/microorganisms11030675 |
_version_ | 1785016359595278336 |
---|---|
author | Guo, Yanxia Fan, Zexiang Li, Mengwei Xie, Huade Peng, Lijuan Yang, Chengjian |
author_facet | Guo, Yanxia Fan, Zexiang Li, Mengwei Xie, Huade Peng, Lijuan Yang, Chengjian |
author_sort | Guo, Yanxia |
collection | PubMed |
description | Sodium nitrate is used as a non-protein nitrogen supplement while methionine is considered as a common methionine additive for ruminants. This study investigated the effects of sodium nitrate and coated methionine supplementation on milk yield, milk composition, rumen fermentation parameters, amino acid composition, and rumen microbial communities in lactating buffaloes. Forty mid-lactation multiparous Murrah buffaloes within the initial days in milk (DIM) = 180.83 ± 56.78 d, milk yield = 7.63 ± 0.19 kg, body weight = 645 ± 25 kg were selected and randomly allocated into four groups (N = 10). All of animals received the same total mixed ratio (TMR) diet. Furthermore, the groups were divided into the control group (CON), 70 g/d sodium nitrate group (SN), 15 g/d palmitate coated L-methionine group (MET), and 70 g/d sodium nitrate +15 g/d palmitate coated L-methionine group (SN+MET). The experiment lasted for six weeks, including two weeks of adaption. The results showed that most rumen-free amino acids, total essential amino acids, and total amino acids in Group SN increased (p < 0.05), while the dry matter intake (DMI) and rumen acetate, propionate, valerate, and total volatile fatty acids (TVFA) in Group MET decreased (p < 0.05). However, there was no significant difference in milk yield, milk protein, milk fat, lactose, total solid content, and sodium nitrate residue in milk among groups (p > 0.05). Group SN+MET had a decreased rumen propionate and valerate (p < 0.05), while increasing the Ace, Chao, and Simpson indices of alpha diversity of rumen bacteria. Proteobacteria and Actinobacteriota were significantly increased (p < 0.05) in Group SN+MET, but Bacteroidota, and Spirochaetota were decreased (p < 0.05). In addition, Group SN+MET also increased the relative abundance of Acinetobacter, Lactococcus, Microbacterium, Chryseobacterium, and Klebsiella, which were positively correlated with cysteine and negatively correlated with rumen acetate, propionate, valerate, and TVFA. Rikenellaceae_RC9_gut_group was identified as a biomarker in Group SN. Norank_f__UCG-011 was identified as a biomarker in Group MET. Acinetobacter, Kurthia, Bacillus, and Corynebacterium were identified as biomarkers in Group SN+MET. In conclusion, sodium nitrate increased rumen free amino acids, while methionine decreased dry matter intake (DMI) and rumen volatile fatty acids. The combined use of sodium nitrate and methionine enriched the species abundance of microorganisms in the rumen and affected the composition of microorganisms in the rumen. However, sodium nitrate, methionine, and their combination had no significant effect on the milk yield and milk composition. It was suggested that the combined use of sodium nitrate and methionine in buffalo production was more beneficial. |
format | Online Article Text |
id | pubmed-10057408 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100574082023-03-30 Effects of Sodium Nitrate and Coated Methionine on Lactation Performance, Rumen Fermentation Characteristics, Amino Acid Metabolism, and Microbial Communities in Lactating Buffaloes Guo, Yanxia Fan, Zexiang Li, Mengwei Xie, Huade Peng, Lijuan Yang, Chengjian Microorganisms Article Sodium nitrate is used as a non-protein nitrogen supplement while methionine is considered as a common methionine additive for ruminants. This study investigated the effects of sodium nitrate and coated methionine supplementation on milk yield, milk composition, rumen fermentation parameters, amino acid composition, and rumen microbial communities in lactating buffaloes. Forty mid-lactation multiparous Murrah buffaloes within the initial days in milk (DIM) = 180.83 ± 56.78 d, milk yield = 7.63 ± 0.19 kg, body weight = 645 ± 25 kg were selected and randomly allocated into four groups (N = 10). All of animals received the same total mixed ratio (TMR) diet. Furthermore, the groups were divided into the control group (CON), 70 g/d sodium nitrate group (SN), 15 g/d palmitate coated L-methionine group (MET), and 70 g/d sodium nitrate +15 g/d palmitate coated L-methionine group (SN+MET). The experiment lasted for six weeks, including two weeks of adaption. The results showed that most rumen-free amino acids, total essential amino acids, and total amino acids in Group SN increased (p < 0.05), while the dry matter intake (DMI) and rumen acetate, propionate, valerate, and total volatile fatty acids (TVFA) in Group MET decreased (p < 0.05). However, there was no significant difference in milk yield, milk protein, milk fat, lactose, total solid content, and sodium nitrate residue in milk among groups (p > 0.05). Group SN+MET had a decreased rumen propionate and valerate (p < 0.05), while increasing the Ace, Chao, and Simpson indices of alpha diversity of rumen bacteria. Proteobacteria and Actinobacteriota were significantly increased (p < 0.05) in Group SN+MET, but Bacteroidota, and Spirochaetota were decreased (p < 0.05). In addition, Group SN+MET also increased the relative abundance of Acinetobacter, Lactococcus, Microbacterium, Chryseobacterium, and Klebsiella, which were positively correlated with cysteine and negatively correlated with rumen acetate, propionate, valerate, and TVFA. Rikenellaceae_RC9_gut_group was identified as a biomarker in Group SN. Norank_f__UCG-011 was identified as a biomarker in Group MET. Acinetobacter, Kurthia, Bacillus, and Corynebacterium were identified as biomarkers in Group SN+MET. In conclusion, sodium nitrate increased rumen free amino acids, while methionine decreased dry matter intake (DMI) and rumen volatile fatty acids. The combined use of sodium nitrate and methionine enriched the species abundance of microorganisms in the rumen and affected the composition of microorganisms in the rumen. However, sodium nitrate, methionine, and their combination had no significant effect on the milk yield and milk composition. It was suggested that the combined use of sodium nitrate and methionine in buffalo production was more beneficial. MDPI 2023-03-07 /pmc/articles/PMC10057408/ /pubmed/36985248 http://dx.doi.org/10.3390/microorganisms11030675 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guo, Yanxia Fan, Zexiang Li, Mengwei Xie, Huade Peng, Lijuan Yang, Chengjian Effects of Sodium Nitrate and Coated Methionine on Lactation Performance, Rumen Fermentation Characteristics, Amino Acid Metabolism, and Microbial Communities in Lactating Buffaloes |
title | Effects of Sodium Nitrate and Coated Methionine on Lactation Performance, Rumen Fermentation Characteristics, Amino Acid Metabolism, and Microbial Communities in Lactating Buffaloes |
title_full | Effects of Sodium Nitrate and Coated Methionine on Lactation Performance, Rumen Fermentation Characteristics, Amino Acid Metabolism, and Microbial Communities in Lactating Buffaloes |
title_fullStr | Effects of Sodium Nitrate and Coated Methionine on Lactation Performance, Rumen Fermentation Characteristics, Amino Acid Metabolism, and Microbial Communities in Lactating Buffaloes |
title_full_unstemmed | Effects of Sodium Nitrate and Coated Methionine on Lactation Performance, Rumen Fermentation Characteristics, Amino Acid Metabolism, and Microbial Communities in Lactating Buffaloes |
title_short | Effects of Sodium Nitrate and Coated Methionine on Lactation Performance, Rumen Fermentation Characteristics, Amino Acid Metabolism, and Microbial Communities in Lactating Buffaloes |
title_sort | effects of sodium nitrate and coated methionine on lactation performance, rumen fermentation characteristics, amino acid metabolism, and microbial communities in lactating buffaloes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057408/ https://www.ncbi.nlm.nih.gov/pubmed/36985248 http://dx.doi.org/10.3390/microorganisms11030675 |
work_keys_str_mv | AT guoyanxia effectsofsodiumnitrateandcoatedmethionineonlactationperformancerumenfermentationcharacteristicsaminoacidmetabolismandmicrobialcommunitiesinlactatingbuffaloes AT fanzexiang effectsofsodiumnitrateandcoatedmethionineonlactationperformancerumenfermentationcharacteristicsaminoacidmetabolismandmicrobialcommunitiesinlactatingbuffaloes AT limengwei effectsofsodiumnitrateandcoatedmethionineonlactationperformancerumenfermentationcharacteristicsaminoacidmetabolismandmicrobialcommunitiesinlactatingbuffaloes AT xiehuade effectsofsodiumnitrateandcoatedmethionineonlactationperformancerumenfermentationcharacteristicsaminoacidmetabolismandmicrobialcommunitiesinlactatingbuffaloes AT penglijuan effectsofsodiumnitrateandcoatedmethionineonlactationperformancerumenfermentationcharacteristicsaminoacidmetabolismandmicrobialcommunitiesinlactatingbuffaloes AT yangchengjian effectsofsodiumnitrateandcoatedmethionineonlactationperformancerumenfermentationcharacteristicsaminoacidmetabolismandmicrobialcommunitiesinlactatingbuffaloes |