Cargando…

Interactions of Surfactants with Biomimetic Membranes—2. Generation of Electric Potential with Non-Ionic Surfactants

It is known that noncharged surfactants lead to electric effects that interact with biomimetic membranes made of nitrocellulose filters, which are impregnated with fatty acid esters. At a surfactant concentration as low as 64 micrometers in one of the solutions, they lead to the transient formation...

Descripción completa

Detalles Bibliográficos
Autores principales: Kocherginsky, Nikolai M., Sharma, Brajendra K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057443/
https://www.ncbi.nlm.nih.gov/pubmed/36984740
http://dx.doi.org/10.3390/membranes13030353
Descripción
Sumario:It is known that noncharged surfactants lead to electric effects that interact with biomimetic membranes made of nitrocellulose filters, which are impregnated with fatty acid esters. At a surfactant concentration as low as 64 micrometers in one of the solutions, they lead to the transient formation of transmembrane electric potential. Maximum changes of this potential are proportional to the log of noncharged surfactant concentrations when it changes by three orders of magnitude. We explain this new and nontrivial effect in terms of an earlier suggested physicochemical mechanics approach and noncharged surfactants transient changes induced by membrane permeability for inorganic ions. It could be used to imitate the interactions of non-ionic drugs with biological membranes. The effect may also be used in determining the concentration of these surfactants and other non-ionic chemicals of concern, such as pharmaceuticals and personal care products.