Cargando…

Single Nucleotide Polymorphisms in the Vitamin D Metabolic Pathway and Their Relationship with High Blood Pressure Risk

High blood pressure (HBP) is the leading risk factor for cardiovascular disease (CVD) and all-cause mortality worldwide. The progression of the disease leads to structural and/or functional alterations in various organs and increases cardiovascular risk. Currently, there are significant deficiencies...

Descripción completa

Detalles Bibliográficos
Autores principales: Rojo-Tolosa, Susana, Márquez-Pete, Noelia, Gálvez-Navas, José María, Pineda-Lancheros, Laura Elena, Fernández-Alonso, Andrea, Membrive-Jiménez, Cristina, Ramírez-Tortosa, María Carmen, Pérez-Ramírez, Cristina, Jiménez-Morales, Alberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057633/
https://www.ncbi.nlm.nih.gov/pubmed/36983047
http://dx.doi.org/10.3390/ijms24065974
Descripción
Sumario:High blood pressure (HBP) is the leading risk factor for cardiovascular disease (CVD) and all-cause mortality worldwide. The progression of the disease leads to structural and/or functional alterations in various organs and increases cardiovascular risk. Currently, there are significant deficiencies in its diagnosis, treatment, and control. Vitamin D is characterized by its functional versatility and its involvement in countless physiological processes. This has led to the association of vitamin D with many chronic diseases, including HBP and CVD, due to its involvement in the regulation of the renin–angiotensin–aldosterone system. The aim of this study was to evaluate the effect of 13 single nucleotide polymorphisms (SNPs) related to the vitamin D metabolic pathway on the risk of developing HBP. An observational case-control study was performed, including 250 patients diagnosed with HBP and 500 controls from the south of Spain (Caucasians). Genetic polymorphisms in CYP27B1 (rs4646536, rs3782130, rs703842, and rs10877012), CYP2R1 rs10741657, GC rs7041, CYP24A1 (rs6068816, and rs4809957), and VDR (BsmI, Cdx2, FokI, ApaI, and TaqI) were analyzed by real-time PCR using TaqMan probes. Logistic regression analysis, adjusted for body mass index (BMI), dyslipidemia, and diabetes, showed that in the genotypic model, carriers of the GC rs7041 TT genotype were associated with a lower risk of developing HBP than the GG genotype (odds ratio (OR) = 0.44, 95% confidence interval (CI): 0.41–0.77, p = 0.005, TT vs. GG). In the dominant model, this association was maintained; carriers of the T allele showed a lower risk of developing HBP than carriers of the GG genotype (OR = 0.69, 95% CI: 0.47–1.03; TT + TG vs. GG, p = 0.010). Finally, in the additive model, consistent with previous models, the T allele was associated with a lower risk of developing HBP than the G allele (OR = 0.65, 95% CI: 0.40–0.87, p = 0.003, T vs. G). Haplotype analysis revealed that GACATG haplotypes for SNPs rs1544410, rs7975232, rs731236, rs4646536, rs703842, and rs10877012 were associated with a marginally significant lower risk of developing HBP (OR = 0.35, 95% CI: 0.12–1.02, p = 0.054). Several studies suggest that GC 7041 is associated with a lower active isoform of the vitamin D binding protein. In conclusion, the rs7041 polymorphism located in the GC gene was significantly associated with a lower risk of developing HBP. This polymorphism could therefore act as a substantial predictive biomarker of the disease.