Cargando…
Secondary and Topological Structural Merge Prediction of Alpha-Helical Transmembrane Proteins Using a Hybrid Model Based on Hidden Markov and Long Short-Term Memory Neural Networks
Alpha-helical transmembrane proteins (αTMPs) play essential roles in drug targeting and disease treatments. Due to the challenges of using experimental methods to determine their structure, αTMPs have far fewer known structures than soluble proteins. The topology of transmembrane proteins (TMPs) can...
Autores principales: | Gao, Ting, Zhao, Yutong, Zhang, Li, Wang, Han |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057634/ https://www.ncbi.nlm.nih.gov/pubmed/36982795 http://dx.doi.org/10.3390/ijms24065720 |
Ejemplares similares
-
Hidden neural networks for transmembrane protein topology prediction
por: Tamposis, Ioannis A., et al.
Publicado: (2021) -
HMM_RA: An Improved Method for Alpha-Helical Transmembrane Protein Topology Prediction
por: Hu, Jing, et al.
Publicado: (2008) -
TMPSS: A Deep Learning-Based Predictor for Secondary Structure and Topology Structure Prediction of Alpha-Helical Transmembrane Proteins
por: Liu, Zhe, et al.
Publicado: (2021) -
Hidden markov model for the prediction of transmembrane proteins using MATLAB
por: Chaturvedi, Navaneet, et al.
Publicado: (2011) -
China’s GDP forecasting using Long Short Term Memory Recurrent Neural Network and Hidden Markov Model
por: Zhang, Junhuan, et al.
Publicado: (2022)