Cargando…
Discriminatively Unsupervised Learning Person Re-Identification via Considering Complicated Images
State-of-the-art purely unsupervised learning person re-ID methods first cluster all the images into multiple clusters and assign each clustered image a pseudo label based on the cluster result. Then, they construct a memory dictionary that stores all the clustered images, and subsequently train the...
Autores principales: | Quan, Rong, Xu, Biaoyi, Liang, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057766/ https://www.ncbi.nlm.nih.gov/pubmed/36991970 http://dx.doi.org/10.3390/s23063259 |
Ejemplares similares
-
Unsupervised Person Re-Identification with Attention-Guided Fine-Grained Features and Symmetric Contrast Learning
por: Wu, Yongzhi, et al.
Publicado: (2022) -
Stable Median Centre Clustering for Unsupervised Domain Adaptation Person Re-Identification
por: Guo, Jifeng, et al.
Publicado: (2021) -
A GAN-Based Self-Training Framework for Unsupervised Domain Adaptive Person Re-Identification
por: Li, Yuanyuan, et al.
Publicado: (2021) -
Dissecting the Roles of Supervised and Unsupervised Learning in Perceptual Discrimination Judgments
por: Loewenstein, Yonatan, et al.
Publicado: (2021) -
Meibography Phenotyping and Classification From Unsupervised Discriminative Feature Learning
por: Yeh, Chun-Hsiao, et al.
Publicado: (2021)