Cargando…
A Laboratory Evaluation of the New Automated Pollen Sensor Beenose: Pollen Discrimination Using Machine Learning Techniques
The monitoring of airborne pollen has received much attention over the last decade, as the prevalence of pollen-induced allergies is constantly increasing. Today, the most common technique to identify airborne pollen species and to monitor their concentrations is based on manual analysis. Here, we p...
Autores principales: | El Azari, Houssam, Renard, Jean-Baptiste, Lauthier, Johann, Dudok de Wit, Thierry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057867/ https://www.ncbi.nlm.nih.gov/pubmed/36991674 http://dx.doi.org/10.3390/s23062964 |
Ejemplares similares
-
Towards an Automatic Pollen Detection System in Ambient Air Using Scattering Functions in the Visible Domain
por: Renard, Jean-Baptiste, et al.
Publicado: (2022) -
Field Evaluation of an Automated Pollen Sensor
por: Jiang, Chenyang, et al.
Publicado: (2022) -
Discrimination of grass pollen of different species by FTIR spectroscopy of individual pollen grains
por: Diehn, Sabrina, et al.
Publicado: (2020) -
On the possibility of automated scoring of pollen mutants.
por: Pinkel, D
Publicado: (1981) -
Flow system for automated analysis of maize pollen.
por: Amano, E
Publicado: (1981)