Cargando…
Relative Permittivity Measurement of Microliter Volume Liquid Samples through Microwave Filters
This paper proposes a concept of dielectric characterization of low-volume liquid samples using the coupling coefficient of filters. The concept is validated through a two-pole substrate integrated waveguide filter in which the liquid under test is mounted on the coupling section between the two res...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057993/ https://www.ncbi.nlm.nih.gov/pubmed/36991594 http://dx.doi.org/10.3390/s23062884 |
_version_ | 1785016508347318272 |
---|---|
author | Yasin, Azhar Gogosh, Nayab Sohail, Syed Irfan Abbas, Syed Muzahir Shafique, Muhammad Farhan Mahmoud, Abdelhady |
author_facet | Yasin, Azhar Gogosh, Nayab Sohail, Syed Irfan Abbas, Syed Muzahir Shafique, Muhammad Farhan Mahmoud, Abdelhady |
author_sort | Yasin, Azhar |
collection | PubMed |
description | This paper proposes a concept of dielectric characterization of low-volume liquid samples using the coupling coefficient of filters. The concept is validated through a two-pole substrate integrated waveguide filter in which the liquid under test is mounted on the coupling section between the two resonators. Unlike the conventional resonator perturbation method reported many times in the literature, this technique uses the coupling coefficient for sensing. The liquid sample is collected in a capillary tube and carefully positioned on the coupling section of the filter; the coupling coefficient of the two resonators varies compared to the relative permittivity of the sample; thus, an empirical model is established. The proposed sensor has been tested to compute the permittivity of different alcohols. Binary solutions of ethanol and water have also been characterized to calculate the volume ratio and relative permittivity as a proof-of-concept. The obtained results show that the proposed sensing technique is capable of characterizing a low quantity of liquids (≈44 µL) with good accuracy, and a worst case measured error of only 6.8% is noted. The ease of integration with other circuitry, low cost, reusability with no deterioration, and adaptability of the proposed sensor makes it a suitable choice for the chemical as well as for the pharmaceutical industry. |
format | Online Article Text |
id | pubmed-10057993 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100579932023-03-30 Relative Permittivity Measurement of Microliter Volume Liquid Samples through Microwave Filters Yasin, Azhar Gogosh, Nayab Sohail, Syed Irfan Abbas, Syed Muzahir Shafique, Muhammad Farhan Mahmoud, Abdelhady Sensors (Basel) Article This paper proposes a concept of dielectric characterization of low-volume liquid samples using the coupling coefficient of filters. The concept is validated through a two-pole substrate integrated waveguide filter in which the liquid under test is mounted on the coupling section between the two resonators. Unlike the conventional resonator perturbation method reported many times in the literature, this technique uses the coupling coefficient for sensing. The liquid sample is collected in a capillary tube and carefully positioned on the coupling section of the filter; the coupling coefficient of the two resonators varies compared to the relative permittivity of the sample; thus, an empirical model is established. The proposed sensor has been tested to compute the permittivity of different alcohols. Binary solutions of ethanol and water have also been characterized to calculate the volume ratio and relative permittivity as a proof-of-concept. The obtained results show that the proposed sensing technique is capable of characterizing a low quantity of liquids (≈44 µL) with good accuracy, and a worst case measured error of only 6.8% is noted. The ease of integration with other circuitry, low cost, reusability with no deterioration, and adaptability of the proposed sensor makes it a suitable choice for the chemical as well as for the pharmaceutical industry. MDPI 2023-03-07 /pmc/articles/PMC10057993/ /pubmed/36991594 http://dx.doi.org/10.3390/s23062884 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yasin, Azhar Gogosh, Nayab Sohail, Syed Irfan Abbas, Syed Muzahir Shafique, Muhammad Farhan Mahmoud, Abdelhady Relative Permittivity Measurement of Microliter Volume Liquid Samples through Microwave Filters |
title | Relative Permittivity Measurement of Microliter Volume Liquid Samples through Microwave Filters |
title_full | Relative Permittivity Measurement of Microliter Volume Liquid Samples through Microwave Filters |
title_fullStr | Relative Permittivity Measurement of Microliter Volume Liquid Samples through Microwave Filters |
title_full_unstemmed | Relative Permittivity Measurement of Microliter Volume Liquid Samples through Microwave Filters |
title_short | Relative Permittivity Measurement of Microliter Volume Liquid Samples through Microwave Filters |
title_sort | relative permittivity measurement of microliter volume liquid samples through microwave filters |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057993/ https://www.ncbi.nlm.nih.gov/pubmed/36991594 http://dx.doi.org/10.3390/s23062884 |
work_keys_str_mv | AT yasinazhar relativepermittivitymeasurementofmicrolitervolumeliquidsamplesthroughmicrowavefilters AT gogoshnayab relativepermittivitymeasurementofmicrolitervolumeliquidsamplesthroughmicrowavefilters AT sohailsyedirfan relativepermittivitymeasurementofmicrolitervolumeliquidsamplesthroughmicrowavefilters AT abbassyedmuzahir relativepermittivitymeasurementofmicrolitervolumeliquidsamplesthroughmicrowavefilters AT shafiquemuhammadfarhan relativepermittivitymeasurementofmicrolitervolumeliquidsamplesthroughmicrowavefilters AT mahmoudabdelhady relativepermittivitymeasurementofmicrolitervolumeliquidsamplesthroughmicrowavefilters |