Cargando…
Two triplet emitting states in one emitter: Near-infrared dual-phosphorescent Au(20) nanocluster
Intrinsic dual-emission (DE) of gold nanoclusters in the near-infrared (NIR) are fascinating for fundamental importance and practical applications, but their synthesis remains a formidable challenge and sophisticated excited-state processes make elucidating DE mechanisms much more arduous. Here, we...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058230/ https://www.ncbi.nlm.nih.gov/pubmed/36989358 http://dx.doi.org/10.1126/sciadv.adg3587 |
Sumario: | Intrinsic dual-emission (DE) of gold nanoclusters in the near-infrared (NIR) are fascinating for fundamental importance and practical applications, but their synthesis remains a formidable challenge and sophisticated excited-state processes make elucidating DE mechanisms much more arduous. Here, we report an all-alkynyl–protected gold nanocluster, Au20, showing a prolate Au(12) tri-octahedral kernel surrounded by two Au(2)(CZ-PrA)(3) dimers, four Au(CZ-PrA)(2) monomers, and two CZ-PrA(−) bridges. Au20 exhibits distinguished photophysical properties including NIR DE at 820 and 940 nm, microsecond radiative relaxation, and 6.26% photoluminescent quantum yield at ambient environment in nondegassed solution. Combining systematic studies on steady/transient spectroscopy and theoretical calculation, we identified two triplet charge transfer (CT) states, ligand-to-kernel and kernel-based CT states as DE origins. Furthermore, this NIR DE exhibits highly independent and sensitive response to surrounding environments, which well coincide with its mechanism. This work not only provides a substantial structure model to understand a distinctive DE mechanism but also motivates the further development of NIR DE materials. |
---|