Cargando…
Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network
Memristors mimic synaptic functions in advanced electronics and image sensors, thereby enabling brain-inspired neuromorphic computing to overcome the limitations of the von Neumann architecture. As computing operations based on von Neumann hardware rely on continuous memory transport between process...
Autores principales: | Seok, Hyunho, Son, Shihoon, Jathar, Sagar Bhaurao, Lee, Jaewon, Kim, Taesung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058286/ https://www.ncbi.nlm.nih.gov/pubmed/36991829 http://dx.doi.org/10.3390/s23063118 |
Ejemplares similares
-
Efficient Synapse Memory Structure for Reconfigurable Digital Neuromorphic Hardware
por: Kim, Jinseok, et al.
Publicado: (2018) -
Two-Terminal Lithium-Mediated Artificial Synapses with Enhanced Weight Modulation for Feasible Hardware Neural Networks
por: Baek, Ji Hyun, et al.
Publicado: (2023) -
Alternative negative weight for simpler hardware implementation of synapse device based neuromorphic system
por: Han, Geonhui, et al.
Publicado: (2021) -
Comparison of Artificial and Spiking Neural Networks on Digital Hardware
por: Davidson, Simon, et al.
Publicado: (2021) -
Energy-Efficient Hardware Implementation of Fully Connected Artificial Neural Networks Using Approximate Arithmetic Blocks
por: Esmali Nojehdeh, Mohammadreza, et al.
Publicado: (2023)