Cargando…
Integrative Analysis of Transcriptome, Proteome, and Phosphoproteome Reveals Potential Roles of Photosynthesis Antenna Proteins in Response to Brassinosteroids Signaling in Maize
Brassinosteroids are a recently discovered group of substances that promote plant growth and productivity. Photosynthesis, which is vital for plant growth and high productivity, is strongly influenced by brassinosteroid signaling. However, the molecular mechanism underlying the photosynthetic respon...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058427/ https://www.ncbi.nlm.nih.gov/pubmed/36986978 http://dx.doi.org/10.3390/plants12061290 |
_version_ | 1785016628593819648 |
---|---|
author | Li, Hui He, Xuewu Gao, Yuanfen Liu, Wenjuan Song, Jun Zhang, Junjie |
author_facet | Li, Hui He, Xuewu Gao, Yuanfen Liu, Wenjuan Song, Jun Zhang, Junjie |
author_sort | Li, Hui |
collection | PubMed |
description | Brassinosteroids are a recently discovered group of substances that promote plant growth and productivity. Photosynthesis, which is vital for plant growth and high productivity, is strongly influenced by brassinosteroid signaling. However, the molecular mechanism underlying the photosynthetic response to brassinosteroid signaling in maize remains obscure. Here, we performed integrated transcriptome, proteome, and phosphoproteomic analyses to identify the key photosynthesis pathway that responds to brassinosteroid signaling. Transcriptome analysis suggested that photosynthesis antenna proteins and carotenoid biosynthesis, plant hormone signal transduction, and MAPK signaling in CK VS EBR and CK VS Brz were significantly enriched in the list of differentially expressed genes upon brassinosteroids treatment. Consistently, proteome and phosphoproteomic analyses indicated that photosynthesis antenna and photosynthesis proteins were significantly enriched in the list of differentially expressed proteins. Thus, transcriptome, proteome, and phosphoproteome analyses showed that major genes and proteins related to photosynthesis antenna proteins were upregulated by brassinosteroids treatment in a dose-dependent manner. Meanwhile, 42 and 186 transcription factor (TF) responses to brassinosteroid signals in maize leaves were identified in the CK VS EBR and CK VS Brz groups, respectively. Our study provides valuable information for a better understanding of the molecular mechanism underlying the photosynthetic response to brassinosteroid signaling in maize. |
format | Online Article Text |
id | pubmed-10058427 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100584272023-03-30 Integrative Analysis of Transcriptome, Proteome, and Phosphoproteome Reveals Potential Roles of Photosynthesis Antenna Proteins in Response to Brassinosteroids Signaling in Maize Li, Hui He, Xuewu Gao, Yuanfen Liu, Wenjuan Song, Jun Zhang, Junjie Plants (Basel) Article Brassinosteroids are a recently discovered group of substances that promote plant growth and productivity. Photosynthesis, which is vital for plant growth and high productivity, is strongly influenced by brassinosteroid signaling. However, the molecular mechanism underlying the photosynthetic response to brassinosteroid signaling in maize remains obscure. Here, we performed integrated transcriptome, proteome, and phosphoproteomic analyses to identify the key photosynthesis pathway that responds to brassinosteroid signaling. Transcriptome analysis suggested that photosynthesis antenna proteins and carotenoid biosynthesis, plant hormone signal transduction, and MAPK signaling in CK VS EBR and CK VS Brz were significantly enriched in the list of differentially expressed genes upon brassinosteroids treatment. Consistently, proteome and phosphoproteomic analyses indicated that photosynthesis antenna and photosynthesis proteins were significantly enriched in the list of differentially expressed proteins. Thus, transcriptome, proteome, and phosphoproteome analyses showed that major genes and proteins related to photosynthesis antenna proteins were upregulated by brassinosteroids treatment in a dose-dependent manner. Meanwhile, 42 and 186 transcription factor (TF) responses to brassinosteroid signals in maize leaves were identified in the CK VS EBR and CK VS Brz groups, respectively. Our study provides valuable information for a better understanding of the molecular mechanism underlying the photosynthetic response to brassinosteroid signaling in maize. MDPI 2023-03-13 /pmc/articles/PMC10058427/ /pubmed/36986978 http://dx.doi.org/10.3390/plants12061290 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Hui He, Xuewu Gao, Yuanfen Liu, Wenjuan Song, Jun Zhang, Junjie Integrative Analysis of Transcriptome, Proteome, and Phosphoproteome Reveals Potential Roles of Photosynthesis Antenna Proteins in Response to Brassinosteroids Signaling in Maize |
title | Integrative Analysis of Transcriptome, Proteome, and Phosphoproteome Reveals Potential Roles of Photosynthesis Antenna Proteins in Response to Brassinosteroids Signaling in Maize |
title_full | Integrative Analysis of Transcriptome, Proteome, and Phosphoproteome Reveals Potential Roles of Photosynthesis Antenna Proteins in Response to Brassinosteroids Signaling in Maize |
title_fullStr | Integrative Analysis of Transcriptome, Proteome, and Phosphoproteome Reveals Potential Roles of Photosynthesis Antenna Proteins in Response to Brassinosteroids Signaling in Maize |
title_full_unstemmed | Integrative Analysis of Transcriptome, Proteome, and Phosphoproteome Reveals Potential Roles of Photosynthesis Antenna Proteins in Response to Brassinosteroids Signaling in Maize |
title_short | Integrative Analysis of Transcriptome, Proteome, and Phosphoproteome Reveals Potential Roles of Photosynthesis Antenna Proteins in Response to Brassinosteroids Signaling in Maize |
title_sort | integrative analysis of transcriptome, proteome, and phosphoproteome reveals potential roles of photosynthesis antenna proteins in response to brassinosteroids signaling in maize |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058427/ https://www.ncbi.nlm.nih.gov/pubmed/36986978 http://dx.doi.org/10.3390/plants12061290 |
work_keys_str_mv | AT lihui integrativeanalysisoftranscriptomeproteomeandphosphoproteomerevealspotentialrolesofphotosynthesisantennaproteinsinresponsetobrassinosteroidssignalinginmaize AT hexuewu integrativeanalysisoftranscriptomeproteomeandphosphoproteomerevealspotentialrolesofphotosynthesisantennaproteinsinresponsetobrassinosteroidssignalinginmaize AT gaoyuanfen integrativeanalysisoftranscriptomeproteomeandphosphoproteomerevealspotentialrolesofphotosynthesisantennaproteinsinresponsetobrassinosteroidssignalinginmaize AT liuwenjuan integrativeanalysisoftranscriptomeproteomeandphosphoproteomerevealspotentialrolesofphotosynthesisantennaproteinsinresponsetobrassinosteroidssignalinginmaize AT songjun integrativeanalysisoftranscriptomeproteomeandphosphoproteomerevealspotentialrolesofphotosynthesisantennaproteinsinresponsetobrassinosteroidssignalinginmaize AT zhangjunjie integrativeanalysisoftranscriptomeproteomeandphosphoproteomerevealspotentialrolesofphotosynthesisantennaproteinsinresponsetobrassinosteroidssignalinginmaize |