Cargando…

Effects of Top and Bottom Electrodes Materials and Operating Ambiance on the Characteristics of MgF(x) Based Bipolar RRAMs

The effects of electrode materials (top and bottom) and the operating ambiances (open-air and vacuum) on the MgF(x)-based resistive random-access memory (RRAM) devices are studied. Experiment results show that the device’s performance and stability depend on the difference between the top and bottom...

Descripción completa

Detalles Bibliográficos
Autores principales: Das, Nayan C., Kim, Yong-Pyo, Hong, Sung-Min, Jang, Jae-Hyung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058438/
https://www.ncbi.nlm.nih.gov/pubmed/36986021
http://dx.doi.org/10.3390/nano13061127
Descripción
Sumario:The effects of electrode materials (top and bottom) and the operating ambiances (open-air and vacuum) on the MgF(x)-based resistive random-access memory (RRAM) devices are studied. Experiment results show that the device’s performance and stability depend on the difference between the top and bottom electrodes’ work functions. Devices are robust in both environments if the work function difference between the bottom and top electrodes is greater than or equal to 0.70 eV. The operating environment-independent device performance depends on the surface roughness of the bottom electrode materials. Reducing the bottom electrodes’ surface roughness will reduce moisture absorption, minimizing the impact of the operating environment. Ti/MgF(x)/p(+)-Si memory devices with the minimum surface roughness of the p(+)-Si bottom electrode show operating environment-independent electroforming-free stable resistive switching properties. The stable memory devices show promising data retentions of >10(4) s in both environments with DC endurance properties of more than 100 cycles.