Cargando…
Dynamics of Pd Subsurface Hydride Formation and Their Impact on the Selectivity Control for Selective Butadiene Hydrogenation Reaction
Structure-sensitive catalyzed reactions can be influenced by a number of parameters. So far, it has been established that the formation of Pd-C species is responsible for the behavior of Pd nanoparticles employed as catalysts in a butadiene partial hydrogenation reaction. In this study, we introduce...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058484/ https://www.ncbi.nlm.nih.gov/pubmed/36985993 http://dx.doi.org/10.3390/nano13061099 |
Sumario: | Structure-sensitive catalyzed reactions can be influenced by a number of parameters. So far, it has been established that the formation of Pd-C species is responsible for the behavior of Pd nanoparticles employed as catalysts in a butadiene partial hydrogenation reaction. In this study, we introduce some experimental evidence indicating that subsurface Pd hydride species are governing the reactivity of this reaction. In particular, we detect that the extent of formation/decomposition of PdHx species is very sensitive to the Pd nanoparticle aggregate dimensions, and this finally controls the selectivity in this process. The main and direct methodology applied to determine this reaction mechanism step is time-resolved high-energy X-ray diffraction (HEXRD). |
---|