Cargando…

Jumping in the Chiral Pool: Asymmetric Hydroaminations with Early Metals

The application of early-metal-based catalysts featuring natural chiral pool motifs, such as amino acids, terpenes and alkaloids, in hydroamination reactions is discussed and compared to those beyond the chiral pool. In particular, alkaline (Li), alkaline earth (Mg, Ca), rare earth (Y, La, Nd, Sm, L...

Descripción completa

Detalles Bibliográficos
Autores principales: Notz, Sebastian, Scharf, Sebastian, Lang, Heinrich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058505/
https://www.ncbi.nlm.nih.gov/pubmed/36985673
http://dx.doi.org/10.3390/molecules28062702
Descripción
Sumario:The application of early-metal-based catalysts featuring natural chiral pool motifs, such as amino acids, terpenes and alkaloids, in hydroamination reactions is discussed and compared to those beyond the chiral pool. In particular, alkaline (Li), alkaline earth (Mg, Ca), rare earth (Y, La, Nd, Sm, Lu), group IV (Ti, Zr, Hf) metal-, and tantalum-based catalytic systems are described, which in recent years improved considerably and have become more practical in their usability. Additional emphasis is directed towards their catalytic performance including yields and regio- as well as stereoselectivity in comparison with the group IV and V transition metals and more widely used rare earth metal-based catalysts.