Cargando…
Trajectory Clustering-Based Anomaly Detection in Indoor Human Movement
Human movement anomalies in indoor spaces commonly involve urgent situations, such as security threats, accidents, and fires. This paper proposes a two-phase framework for detecting indoor human trajectory anomalies based on density-based spatial clustering of applications with noise (DBSCAN). The f...
Autores principales: | Lan, Doi Thi, Yoon, Seokhoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058538/ https://www.ncbi.nlm.nih.gov/pubmed/36992030 http://dx.doi.org/10.3390/s23063318 |
Ejemplares similares
-
Maximization of the Supportable Number of Sensors in QoS-Aware Cluster-Based Underwater Acoustic Sensor Networks
por: Nguyen, Thi-Tham, et al.
Publicado: (2014) -
Applying Movement Constraints to BLE RSSI-Based Indoor Positioning for Extracting Valid Semantic Trajectories
por: Ramadhan, Hani, et al.
Publicado: (2020) -
Facial Expression Recognition Based on Weighted-Cluster Loss and Deep Transfer Learning Using a Highly Imbalanced Dataset
por: Ngo, Quan T., et al.
Publicado: (2020) -
Contribution of Singular Spectral Analysis to Forecasting and Anomalies Detection of Indoors Air Quality
por: Espinosa, Felipe, et al.
Publicado: (2022) -
Deep Convolutional Clustering-Based Time Series Anomaly Detection
por: Chadha, Gavneet Singh, et al.
Publicado: (2021)