Cargando…

Research on the Line of Sight Stabilization Control Technology of Optronic Mast under High Oceanic Condition and Big Swaying Movement of Platform

To realize high-performance line of sight (LOS) stabilization control of the optronic mast under high oceanic conditions and big swaying movements of platforms, a composite control method based on an adaptive radial basis function neural network (RBFNN) and sliding mode control (SMC) is proposed. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Lan, Lintao, Jiang, Wei, Hua, Fangwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058664/
https://www.ncbi.nlm.nih.gov/pubmed/36991895
http://dx.doi.org/10.3390/s23063182
Descripción
Sumario:To realize high-performance line of sight (LOS) stabilization control of the optronic mast under high oceanic conditions and big swaying movements of platforms, a composite control method based on an adaptive radial basis function neural network (RBFNN) and sliding mode control (SMC) is proposed. The adaptive RBFNN is used to approximate the nonlinear and parameter-varying ideal model of the optronic mast, so as to compensate for the uncertainties of the system and reduce the big-amplitude chattering phenomenon caused by excessive switching gain in SMC. The adaptive RBFNN is constructed and optimized online based on the state error information in the working process; therefore, no prior training data are required. At the same time, a saturation function is used to replace the sign function for the time-varying hydrodynamic disturbance torque and the friction disturbance torque, which further reduce the chattering phenomenon of the system. The asymptotic stability of the proposed control method has been proven by the Lyapunov stability theory. The applicability of the proposed control method is validated by a series of simulations and experiments.