Cargando…
Impact of Training Data, Ground Truth and Shape Variability in the Deep Learning-Based Semantic Segmentation of HeLa Cells Observed with Electron Microscopy
This paper investigates the impact of the amount of training data and the shape variability on the segmentation provided by the deep learning architecture U-Net. Further, the correctness of ground truth (GT) was also evaluated. The input data consisted of a three-dimensional set of images of HeLa ce...
Autores principales: | Karabağ, Cefa, Ortega-Ruíz, Mauricio Alberto, Reyes-Aldasoro, Constantino Carlos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058680/ https://www.ncbi.nlm.nih.gov/pubmed/36976110 http://dx.doi.org/10.3390/jimaging9030059 |
Ejemplares similares
-
Volumetric Semantic Instance Segmentation of the Plasma Membrane of HeLa Cells
por: Karabağ, Cefa, et al.
Publicado: (2021) -
Semantic segmentation of HeLa cells: An objective comparison between one traditional algorithm and four deep-learning architectures
por: Karabağ, Cefa, et al.
Publicado: (2020) -
Segmentation and Modelling of the Nuclear Envelope of HeLa Cells Imaged with Serial Block Face Scanning Electron Microscopy †
por: Karabağ, Cefa, et al.
Publicado: (2019) -
Morphological Estimation of Cellularity on Neo-Adjuvant Treated Breast Cancer Histological Images
por: Ortega-Ruiz, Mauricio Alberto, et al.
Publicado: (2020) -
Classification and Visualisation of Normal and Abnormal Radiographs; A Comparison between Eleven Convolutional Neural Network Architectures
por: Ananda, Ananda, et al.
Publicado: (2021)