Cargando…

Crystallisation Degree Analysis during Cryopreservation of Biological Tissue Applying Interval Arithmetic

This paper presents the numerical modelling of heat transfer and changes proceeding in the homogeneous sample, caused by the crystallisation phenomenon during cryopreservation by vitrification. Heat transfer was simulated in a microfluidic system in which the working fluid flowed in micro-channels....

Descripción completa

Detalles Bibliográficos
Autores principales: Piasecka-Belkhayat, Alicja, Skorupa, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058769/
https://www.ncbi.nlm.nih.gov/pubmed/36984066
http://dx.doi.org/10.3390/ma16062186
Descripción
Sumario:This paper presents the numerical modelling of heat transfer and changes proceeding in the homogeneous sample, caused by the crystallisation phenomenon during cryopreservation by vitrification. Heat transfer was simulated in a microfluidic system in which the working fluid flowed in micro-channels. The analysed process included single-phase flow during warming, and two-phase flow during cooling. In the model under consideration, interval parameters were assumed. The base of the mathematical model is given by the Fourier equation, with a heat source including the degree of ice crystallisation. The formulated problem has been solved using the interval version of the finite difference method, with the rules of the directed interval arithmetic. The fourth order Runge–Kutta algorithm has been applied to determine the degree of crystallisation. In the final part of this paper, examples of numerical computations are presented.