Cargando…
EDPNet: An Encoding–Decoding Network with Pyramidal Representation for Semantic Image Segmentation
This paper proposes an encoding–decoding network with a pyramidal representation module, which will be referred to as EDPNet, and is designed for efficient semantic image segmentation. On the one hand, during the encoding process of the proposed EDPNet, the enhancement of the Xception network, i.e.,...
Autores principales: | Chen, Dong, Li, Xianghong, Hu, Fan, Mathiopoulos, P. Takis, Di, Shaoning, Sui, Mingming, Peethambaran, Jiju |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058792/ https://www.ncbi.nlm.nih.gov/pubmed/36991916 http://dx.doi.org/10.3390/s23063205 |
Ejemplares similares
-
Semantic segmentation method of underwater images based on encoder-decoder architecture
por: Wang, Jinkang, et al.
Publicado: (2022) -
EDSSA: An Encoder-Decoder Semantic Segmentation Networks Accelerator on OpenCL-Based FPGA Platform
por: Huang, Hongzhi, et al.
Publicado: (2020) -
Learning Semantic Graphics Using Convolutional Encoder–Decoder Network for Autonomous Weeding in Paddy
por: Adhikari, Shyam Prasad, et al.
Publicado: (2019) -
A Manifold Learning Perspective on Representation Learning: Learning Decoder and Representations without an Encoder
por: Schuster, Viktoria, et al.
Publicado: (2021) -
Decoders configurations based on Unet family and feature pyramid network for COVID-19 segmentation on CT images
por: Nguyen, Hai Thanh, et al.
Publicado: (2021)