Cargando…

Enantioselective Oxidative Stress and DNA Damage Induced by Rac- and S-metolachlor on the Earthworm Eisenia fetida

Metolachlor is a widely used chiral herbicide. However, information on its enantioselective toxicity to earthworms, an important soil organism, remains limited. Herein, the effects of Rac- and S-metolachlor on oxidative stress and DNA damage in Eisenia fetida were investigated and compared. Moreover...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yong, Li, Li, Luo, Zhaozhen, Zhao, Yuqiang, Mu, Yalin, Zhang, Qingming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058842/
https://www.ncbi.nlm.nih.gov/pubmed/36977011
http://dx.doi.org/10.3390/toxics11030246
Descripción
Sumario:Metolachlor is a widely used chiral herbicide. However, information on its enantioselective toxicity to earthworms, an important soil organism, remains limited. Herein, the effects of Rac- and S-metolachlor on oxidative stress and DNA damage in Eisenia fetida were investigated and compared. Moreover, the degradation of both herbicides in the soil was also determined. The results showed that reactive oxygen species (ROS) in E. fetida were more easily induced by Rac-metolachlor than S-metolachlor at a higher concentration (above 16 µg/g). Similarly, the effects of Rac-metolachlor on superoxide dismutase (SOD) activity and DNA damage in E. fetida were more significant than those of S-metolachlor at the same exposure concentration and time. Rac- and S-metolachlor did not result in severe lipid peroxidation. The toxic effects of both herbicides on E. fetida gradually decreased after 7 days as the exposure was prolonged. At the same concentration, S-metolachlor degrades faster than Rac-metolachlor. These results suggest that Rac-metolachlor has a greater effect on E. fetida than S-metolachlor, providing a significant reference for the rational use of metolachlor.