Cargando…
Deep Reinforcement Learning-Based One-to-Multiple Cooperative Computing in Large-Scale Event-Driven Wireless Sensor Networks
Emergency event monitoring is a hot topic in wireless sensor networks (WSNs). Benefiting from the progress of Micro-Electro-Mechanical System (MEMS) technology, it is possible to process emergency events locally by using the computing capacities of redundant nodes in large-scale WSNs. However, it is...
Autores principales: | Guo, Zhihui, Chen, Hongbin, Li, Shichao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058844/ https://www.ncbi.nlm.nih.gov/pubmed/36991947 http://dx.doi.org/10.3390/s23063237 |
Ejemplares similares
-
Deep Reinforcement Learning for Attacking Wireless Sensor Networks
por: Parras, Juan, et al.
Publicado: (2021) -
A New Path-Constrained Rendezvous Planning Approach for Large-Scale Event-Driven Wireless Sensor Networks
por: Vajdi, Ahmadreza, et al.
Publicado: (2018) -
Deep Reinforcement Learning–Based Online One-to-Multiple Charging Scheme in Wireless Rechargeable Sensor Network
por: Gong, Zheng, et al.
Publicado: (2023) -
Distributed Hybrid Two-Stage Multi-Sensor Fusion for Cooperative Modulation Classification in Large-Scale Wireless Sensor Networks
por: Markovic, Goran B., et al.
Publicado: (2019) -
Cooperative Computing System for Heavy-Computation and Low-Latency Processing in Wireless Sensor Networks
por: Jung, Jongtack, et al.
Publicado: (2018)