Cargando…
The Successive Next Network as Augmented Regularization for Deformable Brain MR Image Registration
Deep-learning-based registration methods can not only save time but also automatically extract deep features from images. In order to obtain better registration performance, many scholars use cascade networks to realize a coarse-to-fine registration progress. However, such cascade networks will incr...
Autores principales: | Li, Meng, Hu, Shunbo, Li, Guoqiang, Zhang, Fuchun, Li, Jitao, Yang, Yue, Zhang, Lintao, Liu, Mingtao, Xu, Yan, Fu, Deqian, Zhang, Wenyin, Wang, Xing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058981/ https://www.ncbi.nlm.nih.gov/pubmed/36991918 http://dx.doi.org/10.3390/s23063208 |
Ejemplares similares
-
Overview of Multi-Modal Brain Tumor MR Image Segmentation
por: Zhang, Wenyin, et al.
Publicado: (2021) -
Contouring lumbosacral plexus nerves with MR neurography and MR/CT deformable registration technique
por: Cao, Xi, et al.
Publicado: (2022) -
Evaluation of whole‐body MR to CT deformable image registration
por: Akbarzadeh, A., et al.
Publicado: (2013) -
Symmetric Deformable Registration via Learning a Pseudomean for MR Brain Images
por: Sui, Xiaodan, et al.
Publicado: (2021) -
Edge-Aware Pyramidal Deformable Network for Unsupervised Registration of Brain MR Images
por: Cao, Yiqin, et al.
Publicado: (2021)