Cargando…

Railroad Sleeper Condition Monitoring Using Non-Contact in Motion Ultrasonic Ranging and Machine Learning-Based Image Processing

An ultrasonic sonar-based ranging technique is introduced for measuring full-field railroad crosstie (sleeper) deflections. Tie deflection measurements have numerous applications, such as detecting degrading ballast support conditions and evaluating sleeper or track stiffness. The proposed technique...

Descripción completa

Detalles Bibliográficos
Autores principales: Datta, Diptojit, Hosseinzadeh, Ali Zare, Cui, Ranting, Lanza di Scalea, Francesco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059011/
https://www.ncbi.nlm.nih.gov/pubmed/36991816
http://dx.doi.org/10.3390/s23063105
Descripción
Sumario:An ultrasonic sonar-based ranging technique is introduced for measuring full-field railroad crosstie (sleeper) deflections. Tie deflection measurements have numerous applications, such as detecting degrading ballast support conditions and evaluating sleeper or track stiffness. The proposed technique utilizes an array of air-coupled ultrasonic transducers oriented parallel to the tie, capable of “in-motion” contactless inspections. The transducers are used in pulse-echo mode, and the distance between the transducer and the tie surface is computed by tracking the time-of-flight of the reflected waveforms from the tie surface. An adaptive, reference-based cross-correlation operation is used to compute the relative tie deflections. Multiple measurements along the width of the tie allow the measurement of twisting deformations and longitudinal deflections (3D deflections). Computer vision-based image classification techniques are also utilized for demarcating tie boundaries and tracking the spatial location of measurements along the direction of train movement. Results from field tests, conducted at walking speed at a BNSF train yard in San Diego, CA, with a loaded train car are presented. The tie deflection accuracy and repeatability analyses indicate the potential of the technique to extract full-field tie deflections in a non-contact manner. Further developments are needed to enable measurements at higher speeds.