Cargando…
Microwave Dual-Crack Sensor with a High Q-Factor Using the TE(20) Resonance of a Complementary Split-Ring Resonator on a Substrate-Integrated Waveguide
Microwave sensors have attracted interest as non-destructive metal crack detection (MCD) devices due to their low cost, simple fabrication, potential miniaturization, noncontact nature, and capability for remote detection. However, the development of multi-crack sensors of a suitable size and qualit...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059035/ https://www.ncbi.nlm.nih.gov/pubmed/36984984 http://dx.doi.org/10.3390/mi14030578 |
Sumario: | Microwave sensors have attracted interest as non-destructive metal crack detection (MCD) devices due to their low cost, simple fabrication, potential miniaturization, noncontact nature, and capability for remote detection. However, the development of multi-crack sensors of a suitable size and quality factor (Q-factor) remains a challenge. In the present study, we propose a multi-MCD sensor that combines a higher-mode substrate-integrated waveguide (SIW) and complementary split-ring resonators (CSRRs). In order to increase the Q-factor, the device is miniaturized; the MCD is facilitated; and two independent CSRRs are loaded onto the SIW, where the electromagnetic field is concentrated. The concentrated electromagnetic field of the SIW improves the Q-factor of the CSRRs, and each CSRR creates its own resonance and produces a miniaturizing effect by activating the sensor below the cut-off frequency of the SIW. The proposed multi-MCD sensor is numerically and experimentally demonstrated for cracks with different widths and depths. The fabricated sensor with a TE(20)-mode SIW and CSRRs is able to efficiently detect two sub-millimeter metal cracks simultaneously with a high Q-factor of 281. |
---|