Cargando…
NO and GSH Alleviate the Inhibition of Low-Temperature Stress on Cowpea Seedlings
Low-temperature stress in early spring seriously affects the growth and development of cowpea seedlings. To study the alleviative effect of the exogenous substances nitric oxide (NO) and glutathione (GSH) on cowpea (Vigna unguiculata (Linn.) Walp.) seedlings under 8 °C low-temperature stress, 200 μm...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059058/ https://www.ncbi.nlm.nih.gov/pubmed/36987004 http://dx.doi.org/10.3390/plants12061317 |
Sumario: | Low-temperature stress in early spring seriously affects the growth and development of cowpea seedlings. To study the alleviative effect of the exogenous substances nitric oxide (NO) and glutathione (GSH) on cowpea (Vigna unguiculata (Linn.) Walp.) seedlings under 8 °C low-temperature stress, 200 μmol·L(−1) NO and 5 mmol·L(−1) GSH were sprayed on cowpea seedlings whose second true leaf was about to unfold to enhance the tolerance of cowpea seedlings to low temperature. Spraying NO and GSH can eliminate excess superoxide radicals (O(2)(−)) and hydrogen peroxide (H(2)O(2)) to varying degrees, reduce the content of malondialdehyde and relative conductivity, delay the degradation of photosynthetic pigments, increase the content of osmotic regulating substances such as soluble sugar, soluble protein, and proline, and improve the activity of antioxidant enzymes such as superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and monodehydroascorbate reductase. This study revealed that the mixed use of NO and GSH played an important role in alleviating low temperature stress, and the effect of spraying NO alone was better than that of spraying GSH. |
---|