Cargando…

Design, Synthesis, and Biological Evaluation of Novel Hydroxamic Acid-Based Organoselenium Hybrids

We report the design and synthesis of novel hydroxamic acid-tethered organoselenium (OSe) hybrids. Their antimicrobial and anticancer activities were assessed against different microbes (e.g., Candida albicans (C. albicans), Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus)), as well...

Descripción completa

Detalles Bibliográficos
Autores principales: Alotaibi, Jameelah S., Al-Faiyz, Yasair S., Shaaban, Saad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059083/
https://www.ncbi.nlm.nih.gov/pubmed/36986468
http://dx.doi.org/10.3390/ph16030367
Descripción
Sumario:We report the design and synthesis of novel hydroxamic acid-tethered organoselenium (OSe) hybrids. Their antimicrobial and anticancer activities were assessed against different microbes (e.g., Candida albicans (C. albicans), Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus)), as well as liver and breast carcinomas. OSe hybrid 8 showed promising anticancer activity, with IC(50) = 7.57 ± 0.5 µM against HepG2 and IC(50) = 9.86 ± 0.7 µM against MCF-7 cells. Additionally, OSe compounds 8 and 15 exhibited promising antimicrobial activities, particularly against C. albicans (IA% = 91.7 and 83.3) and S. aureus (IA% = 90.5 and 71.4). The minimum inhibitory concentration (MIC) assay confirmed the potential antimicrobial activity of OSe compound 8. OSe compounds 8 and 16 displayed good antioxidant activities compared to vitamin C in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. These results indicate that hydroxamic acid-based organoselenium hybrids have promising biological activities such as anticancer, antimicrobial, and antioxidant properties, especially compounds 8, 13, 15, and 16, which warrant further studies.