Cargando…
Radio Wave-Activated Chemotherapy—A Novel Nanoparticle Thermoresponsive Copolymer Drug Delivery Platform
Radio waves are highly penetrating, non-ionizing, and cause minimal damage to surrounding tissues. Radio wave control of drug release has been achieved using a novel thermoresponsive copolymer bound to a superparamagnetic iron oxide nanoparticle (SPION) core. A NIPAM-acrylamide-methacrolein copolyme...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059094/ https://www.ncbi.nlm.nih.gov/pubmed/36984362 http://dx.doi.org/10.3390/ma16062482 |
Sumario: | Radio waves are highly penetrating, non-ionizing, and cause minimal damage to surrounding tissues. Radio wave control of drug release has been achieved using a novel thermoresponsive copolymer bound to a superparamagnetic iron oxide nanoparticle (SPION) core. A NIPAM-acrylamide-methacrolein copolymer underwent a coil-to-globular structure phase change upon reaching a critical temperature above the human body temperature but below hyperthermic temperatures. The copolymer was covalently bound to SPIONs which increase in temperature upon exposure to radio waves. This effect could be controlled by varying input energies and frequencies. For controlled drug release, proteins were bound via aldehyde groups on the copolymer and amine groups on the protein. The radio wave-induced heating of the complex thereby released the drug-bearing proteins. The fine-tuning of the radio wave exposure allowed multiple cycles of protein-drug release. The fluorescent tagging of the complex by FITC was also achieved in situ, allowing the tagging of the complex. The localization of the complex could also be achieved in vitro under a permanent magnetic field. |
---|