Cargando…

The Process Parameters of Micro Particle Bombarding (MPB) for Surface Integrity Enhancement of Cermet Material and Tool Steel

In order to increase the performance of tool or mold/die, there are a lot of micro features on the surface to provide special functions, such as anti-adhesion or lubrication. The MPB (Micro Particle Bombarding) process provides a powerful technology to enhance the surface quality without damaging th...

Descripción completa

Detalles Bibliográficos
Autores principales: Hsu, Fu-Chuan, Chen, Li-Jie, Liu, Zong-Rong, Tsai, Hsiu-An, Lin, Chin-Hao, Chen, Wei-Yu, Lee, Hwa-Teng, Cheng, Tsung-Jen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059253/
https://www.ncbi.nlm.nih.gov/pubmed/36985050
http://dx.doi.org/10.3390/mi14030643
Descripción
Sumario:In order to increase the performance of tool or mold/die, there are a lot of micro features on the surface to provide special functions, such as anti-adhesion or lubrication. The MPB (Micro Particle Bombarding) process provides a powerful technology to enhance the surface quality without damaging the micro features. The effect of MPB parameters were investigated by bombarding the surface with extremely small particles (20~200 µm in diameter) at a high velocity and pressure to obtain a better surface integrity. -The MPB has two functions, one is micro blasting for cleaning purposes and the other is micro shot peening for surface strengthening. The regression relationship between particle bombarding time and micro hardness is established to predict the surface hardness after MPB process. The experimental results reveal that the surface hardness of cermet is increased 14~66% (HV2167~HV3163) by micro particle bombarding. The micro shot peening provides a good surface integrity due to thebetter surface roughness of 0.1 μmRa and higher compress residual stress of −1393.7 MPa, which is up to 26% enhancement compared with the base material cermet. After micro shot peening, the surface hardness of the SKD11 tool steel increased from HV 686 to HV 739~985. The surface roughness of SKD 11 after micro shot peening was 0.31–0.48 μmRa, while the surface roughness after micro blasting was 0.77–1.15 μmRa. It is useful to predict the residual stress for micro blasting by surface roughness, and to estimate the residual stress after micro shot peening by surface hardness by applying the MPB process in industry in the case of SKD 11 tool steel.