Cargando…
Systematic Selection Signature Analysis of Chinese Gamecocks Based on Genomic and Transcriptomic Data
Selection pressures driven by natural causes or human interference are key factors causing genome variants and signatures of selection in specific regions of the genome. Gamecocks were bred for cockfighting, presenting pea-combs, larger body sizes, stronger limbs, and higher levels of aggression tha...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059269/ https://www.ncbi.nlm.nih.gov/pubmed/36982941 http://dx.doi.org/10.3390/ijms24065868 |
Sumario: | Selection pressures driven by natural causes or human interference are key factors causing genome variants and signatures of selection in specific regions of the genome. Gamecocks were bred for cockfighting, presenting pea-combs, larger body sizes, stronger limbs, and higher levels of aggression than other chickens. In this study, we aimed to explore the genomic differences between Chinese gamecocks and commercial, indigenous, foreign, and cultivated breeds by detecting the regions or sites under natural or artificial selection using genome-wide association studies (GWAS), genome-wide selective sweeps based on the genetic differentiation index (F(ST)), and transcriptome analyses. Ten genes were identified using GWAS and F(ST): gga-mir-6608-1, SOX5, DGKB, ISPD, IGF2BP1, AGMO, MEOX2, GIP, DLG5, and KCNMA1. The ten candidate genes were mainly associated with muscle and skeletal development, glucose metabolism, and the pea-comb phenotype. Enrichment analysis results showed that the differentially expressed genes between the Luxi (LX) gamecock and Rhode Island Red (RIR) chicken were mainly related to muscle development and neuroactive-related pathways. This study will help to understand the genetic basis and evolution of Chinese gamecocks and support the further use of gamecocks as an excellent breeding material from a genetic perspective. |
---|