Cargando…
From Laboratory to Field: Unsupervised Domain Adaptation for Plant Disease Recognition in the Wild
Plant disease recognition is of vital importance to monitor plant development and predicting crop production. However, due to data degradation caused by different conditions of image acquisition, e.g., laboratory vs. field environment, machine learning-based recognition models generated within a spe...
Autores principales: | Wu, Xinlu, Fan, Xijian, Luo, Peng, Choudhury, Sruti Das, Tjahjadi, Tardi, Hu, Chunhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059679/ https://www.ncbi.nlm.nih.gov/pubmed/37011278 http://dx.doi.org/10.34133/plantphenomics.0038 |
Ejemplares similares
-
A Segmentation-Guided Deep Learning Framework for Leaf Counting
por: Fan, Xijian, et al.
Publicado: (2022) -
A Multiscale Point-Supervised Network for Counting Maize Tassels in the Wild
por: Zheng, Haoyu, et al.
Publicado: (2023) -
Gait Recognition and Understanding Based on Hierarchical Temporal Memory Using 3D Gait Semantic Folding
por: Luo, Jian, et al.
Publicado: (2020) -
2.5D Multi-View Gait Recognition Based on Point Cloud Registration
por: Tang, Jin, et al.
Publicado: (2014) -
Overcoming field variability: unsupervised domain adaptation for enhanced crop-weed recognition in diverse farmlands
por: Ilyas, Talha, et al.
Publicado: (2023)