Cargando…
HSV1716 Prevents Myeloma Cell Regrowth When Combined with Bortezomib In Vitro and Significantly Reduces Systemic Tumor Growth in Mouse Models
Multiple myeloma remains largely incurable due to refractory disease; therefore, novel treatment strategies that are safe and well-tolerated are required. Here, we studied the modified herpes simplex virus HSV1716 (SEPREHVIR(®)), which only replicates in transformed cells. Myeloma cell lines and pri...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059747/ https://www.ncbi.nlm.nih.gov/pubmed/36992311 http://dx.doi.org/10.3390/v15030603 |
_version_ | 1785016948521697280 |
---|---|
author | Tazzyman, Simon Stewart, Georgia R. Yeomans, James Linford, Adam Lath, Darren Conner, Joe Muthana, Munitta Chantry, Andrew D. Lawson, Michelle A. |
author_facet | Tazzyman, Simon Stewart, Georgia R. Yeomans, James Linford, Adam Lath, Darren Conner, Joe Muthana, Munitta Chantry, Andrew D. Lawson, Michelle A. |
author_sort | Tazzyman, Simon |
collection | PubMed |
description | Multiple myeloma remains largely incurable due to refractory disease; therefore, novel treatment strategies that are safe and well-tolerated are required. Here, we studied the modified herpes simplex virus HSV1716 (SEPREHVIR(®)), which only replicates in transformed cells. Myeloma cell lines and primary patient cells were infected with HSV1716 and assessed for cell death using propidium iodide (PI) and Annexin-V staining and markers of apoptosis and autophagy by qPCR. Myeloma cell death was associated with dual PI and Annexin-V positivity and increased expression of apoptotic genes, including CASP1, CASP8, CASP9, BAX, BID, and FASL. The combination of HSV1716 and bortezomib treatments prevented myeloma cell regrowth for up to 25 days compared to only transient cell growth suppression with bortezomib treatment. The viral efficacy was tested in a xenograft (JJN-3 cells in NSG mice) and syngeneic (murine 5TGM1 cells in C57BL/KaLwRijHsd mice) systemic models of myeloma. After 6 or 7 days, the post-tumor implantation mice were treated intravenously with the vehicle or HSV1716 (1 × 10(7) plaque forming units/1 or 2 times per week). Both murine models treated with HSV1716 had significantly lower tumor burden rates compared to the controls. In conclusion, HSV1716 has potent anti-myeloma effects and may represent a novel therapy for multiple myeloma. |
format | Online Article Text |
id | pubmed-10059747 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100597472023-03-30 HSV1716 Prevents Myeloma Cell Regrowth When Combined with Bortezomib In Vitro and Significantly Reduces Systemic Tumor Growth in Mouse Models Tazzyman, Simon Stewart, Georgia R. Yeomans, James Linford, Adam Lath, Darren Conner, Joe Muthana, Munitta Chantry, Andrew D. Lawson, Michelle A. Viruses Article Multiple myeloma remains largely incurable due to refractory disease; therefore, novel treatment strategies that are safe and well-tolerated are required. Here, we studied the modified herpes simplex virus HSV1716 (SEPREHVIR(®)), which only replicates in transformed cells. Myeloma cell lines and primary patient cells were infected with HSV1716 and assessed for cell death using propidium iodide (PI) and Annexin-V staining and markers of apoptosis and autophagy by qPCR. Myeloma cell death was associated with dual PI and Annexin-V positivity and increased expression of apoptotic genes, including CASP1, CASP8, CASP9, BAX, BID, and FASL. The combination of HSV1716 and bortezomib treatments prevented myeloma cell regrowth for up to 25 days compared to only transient cell growth suppression with bortezomib treatment. The viral efficacy was tested in a xenograft (JJN-3 cells in NSG mice) and syngeneic (murine 5TGM1 cells in C57BL/KaLwRijHsd mice) systemic models of myeloma. After 6 or 7 days, the post-tumor implantation mice were treated intravenously with the vehicle or HSV1716 (1 × 10(7) plaque forming units/1 or 2 times per week). Both murine models treated with HSV1716 had significantly lower tumor burden rates compared to the controls. In conclusion, HSV1716 has potent anti-myeloma effects and may represent a novel therapy for multiple myeloma. MDPI 2023-02-22 /pmc/articles/PMC10059747/ /pubmed/36992311 http://dx.doi.org/10.3390/v15030603 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tazzyman, Simon Stewart, Georgia R. Yeomans, James Linford, Adam Lath, Darren Conner, Joe Muthana, Munitta Chantry, Andrew D. Lawson, Michelle A. HSV1716 Prevents Myeloma Cell Regrowth When Combined with Bortezomib In Vitro and Significantly Reduces Systemic Tumor Growth in Mouse Models |
title | HSV1716 Prevents Myeloma Cell Regrowth When Combined with Bortezomib In Vitro and Significantly Reduces Systemic Tumor Growth in Mouse Models |
title_full | HSV1716 Prevents Myeloma Cell Regrowth When Combined with Bortezomib In Vitro and Significantly Reduces Systemic Tumor Growth in Mouse Models |
title_fullStr | HSV1716 Prevents Myeloma Cell Regrowth When Combined with Bortezomib In Vitro and Significantly Reduces Systemic Tumor Growth in Mouse Models |
title_full_unstemmed | HSV1716 Prevents Myeloma Cell Regrowth When Combined with Bortezomib In Vitro and Significantly Reduces Systemic Tumor Growth in Mouse Models |
title_short | HSV1716 Prevents Myeloma Cell Regrowth When Combined with Bortezomib In Vitro and Significantly Reduces Systemic Tumor Growth in Mouse Models |
title_sort | hsv1716 prevents myeloma cell regrowth when combined with bortezomib in vitro and significantly reduces systemic tumor growth in mouse models |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059747/ https://www.ncbi.nlm.nih.gov/pubmed/36992311 http://dx.doi.org/10.3390/v15030603 |
work_keys_str_mv | AT tazzymansimon hsv1716preventsmyelomacellregrowthwhencombinedwithbortezomibinvitroandsignificantlyreducessystemictumorgrowthinmousemodels AT stewartgeorgiar hsv1716preventsmyelomacellregrowthwhencombinedwithbortezomibinvitroandsignificantlyreducessystemictumorgrowthinmousemodels AT yeomansjames hsv1716preventsmyelomacellregrowthwhencombinedwithbortezomibinvitroandsignificantlyreducessystemictumorgrowthinmousemodels AT linfordadam hsv1716preventsmyelomacellregrowthwhencombinedwithbortezomibinvitroandsignificantlyreducessystemictumorgrowthinmousemodels AT lathdarren hsv1716preventsmyelomacellregrowthwhencombinedwithbortezomibinvitroandsignificantlyreducessystemictumorgrowthinmousemodels AT connerjoe hsv1716preventsmyelomacellregrowthwhencombinedwithbortezomibinvitroandsignificantlyreducessystemictumorgrowthinmousemodels AT muthanamunitta hsv1716preventsmyelomacellregrowthwhencombinedwithbortezomibinvitroandsignificantlyreducessystemictumorgrowthinmousemodels AT chantryandrewd hsv1716preventsmyelomacellregrowthwhencombinedwithbortezomibinvitroandsignificantlyreducessystemictumorgrowthinmousemodels AT lawsonmichellea hsv1716preventsmyelomacellregrowthwhencombinedwithbortezomibinvitroandsignificantlyreducessystemictumorgrowthinmousemodels |