Cargando…

Denervation Drives YAP/TAZ Activation in Muscular Fibro/Adipogenic Progenitors

Loss of motoneuron innervation (denervation) is a hallmark of neurodegeneration and aging of the skeletal muscle. Denervation induces fibrosis, a response attributed to the activation and expansion of resident fibro/adipogenic progenitors (FAPs), i.e., multipotent stromal cells with myofibroblast po...

Descripción completa

Detalles Bibliográficos
Autores principales: Gallardo, Felipe S., Córdova-Casanova, Adriana, Bock-Pereda, Alexia, Rebolledo, Daniela L., Ravasio, Andrea, Casar, Juan Carlos, Brandan, Enrique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059792/
https://www.ncbi.nlm.nih.gov/pubmed/36982659
http://dx.doi.org/10.3390/ijms24065585
Descripción
Sumario:Loss of motoneuron innervation (denervation) is a hallmark of neurodegeneration and aging of the skeletal muscle. Denervation induces fibrosis, a response attributed to the activation and expansion of resident fibro/adipogenic progenitors (FAPs), i.e., multipotent stromal cells with myofibroblast potential. Using in vivo and in silico approaches, we revealed FAPs as a novel cell population that activates the transcriptional coregulators YAP/TAZ in response to skeletal muscle denervation. Here, we found that denervation induces the expression and transcriptional activity of YAP/TAZ in whole muscle lysates. Using the Pdgfra(H2B:EGFP/+) transgenic reporter mice to trace FAPs, we demonstrated that denervation leads to increased YAP expression that accumulates within FAPs nuclei. Consistently, re-analysis of published single-nucleus RNA sequencing (snRNA-seq) data indicates that FAPs from denervated muscles have a higher YAP/TAZ signature level than control FAPs. Thus, our work provides the foundations to address the functional role of YAP/TAZ in FAPs in a neurogenic pathological context, which could be applied to develop novel therapeutic approaches for the treatment of muscle disorders triggered by motoneuron degeneration.