Cargando…
Enhancing Electrochemical Performance with g-C(3)N(4)/CeO(2) Binary Electrode Material
An innovative form of 2D/0D g-C(3)N(4)/CeO(2) nanostructure was synthesized using a simple precursor decomposition process. The 2D g-C(3)N(4) directs the growth of 0D CeO(2) quantum dots, while also promoting good dispersion of CeO(2)QDs. This 2D/0D nanostructure shows a capacitance of 202.5 F/g and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059818/ https://www.ncbi.nlm.nih.gov/pubmed/36985459 http://dx.doi.org/10.3390/molecules28062489 |
Sumario: | An innovative form of 2D/0D g-C(3)N(4)/CeO(2) nanostructure was synthesized using a simple precursor decomposition process. The 2D g-C(3)N(4) directs the growth of 0D CeO(2) quantum dots, while also promoting good dispersion of CeO(2)QDs. This 2D/0D nanostructure shows a capacitance of 202.5 F/g and notable rate capability and stability, outperforming the g-C(3)N(4) electrode, reflecting the state-of-the-art g-C(3)N(4) binary electrodes. The binary combination of materials also enables an asymmetric device (g-C(3)N(4)/CeO(2)QDs//AC) to deliver the highest energy density (9.25 Wh/kg) and power density (900 W/kg). The superior rate capacity and stability endorsed the quantum structural merits of CeO(2)QDs and layered g-C(3)N(4), which offer more accessible sites for ion transport. These results suggest that the g-C(3)N(4)/CeO(2)QDs nanostructure is a promising electrode material for energy storage devices. |
---|