Cargando…
Combined Use of RT-qPCR and NGS for Identification and Surveillance of SARS-CoV-2 Variants of Concern in Residual Clinical Laboratory Samples in Miami-Dade County, Florida
Over the course of the COVID-19 pandemic, SARS-CoV-2 variants of concern (VOCs) with increased transmissibility and immune escape capabilities, such as Delta and Omicron, have triggered waves of new COVID-19 infections worldwide, and Omicron subvariants continue to represent a global health concern....
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059866/ https://www.ncbi.nlm.nih.gov/pubmed/36992302 http://dx.doi.org/10.3390/v15030593 |
_version_ | 1785016977519017984 |
---|---|
author | Carattini, Yamina L. Griswold, Anthony Williams, Sion Valiathan, Ranjini Zhou, Yi Shukla, Bhavarth Abbo, Lilian M. Parra, Katiuska Jorda, Merce Nimer, Stephen D. Sologon, Corneliu Gallegos, Hilma R. Weiss, Roy E. Ferreira, Tanira Memon, Abdul Paige, Peter G. Thomas, Emmanuel Andrews, David M. |
author_facet | Carattini, Yamina L. Griswold, Anthony Williams, Sion Valiathan, Ranjini Zhou, Yi Shukla, Bhavarth Abbo, Lilian M. Parra, Katiuska Jorda, Merce Nimer, Stephen D. Sologon, Corneliu Gallegos, Hilma R. Weiss, Roy E. Ferreira, Tanira Memon, Abdul Paige, Peter G. Thomas, Emmanuel Andrews, David M. |
author_sort | Carattini, Yamina L. |
collection | PubMed |
description | Over the course of the COVID-19 pandemic, SARS-CoV-2 variants of concern (VOCs) with increased transmissibility and immune escape capabilities, such as Delta and Omicron, have triggered waves of new COVID-19 infections worldwide, and Omicron subvariants continue to represent a global health concern. Tracking the prevalence and dynamics of VOCs has clinical and epidemiological significance and is essential for modeling the progression and evolution of the COVID-19 pandemic. Next generation sequencing (NGS) is recognized as the gold standard for genomic characterization of SARS-CoV-2 variants, but it is labor and cost intensive and not amenable to rapid lineage identification. Here we describe a two-pronged approach for rapid, cost-effective surveillance of SARS-CoV-2 VOCs by combining reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) and periodic NGS with the ARTIC sequencing method. Variant surveillance by RT-qPCR included the commercially available TaqPath COVID-19 Combo Kit to track S-gene target failure (SGTF) associated with the spike protein deletion H69-V70, as well as two internally designed and validated RT-qPCR assays targeting two N-terminal-domain (NTD) spike gene deletions, NTD156-7 and NTD25-7. The NTD156-7 RT-qPCR assay facilitated tracking of the Delta variant, while the NTD25-7 RT-qPCR assay was used for tracking Omicron variants, including the BA.2, BA.4, and BA.5 lineages. In silico validation of the NTD156-7 and NTD25-7 primers and probes compared with publicly available SARS-CoV-2 genome databases showed low variability in regions corresponding to oligonucleotide binding sites. Similarly, in vitro validation with NGS-confirmed samples showed excellent correlation. RT-qPCR assays allow for near-real-time monitoring of circulating and emerging variants allowing for ongoing surveillance of variant dynamics in a local population. By performing periodic sequencing of variant surveillance by RT-qPCR methods, we were able to provide ongoing validation of the results obtained by RT-qPCR screening. Rapid SARS-CoV-2 variant identification and surveillance by this combined approach served to inform clinical decisions in a timely manner and permitted better utilization of sequencing resources. |
format | Online Article Text |
id | pubmed-10059866 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100598662023-03-30 Combined Use of RT-qPCR and NGS for Identification and Surveillance of SARS-CoV-2 Variants of Concern in Residual Clinical Laboratory Samples in Miami-Dade County, Florida Carattini, Yamina L. Griswold, Anthony Williams, Sion Valiathan, Ranjini Zhou, Yi Shukla, Bhavarth Abbo, Lilian M. Parra, Katiuska Jorda, Merce Nimer, Stephen D. Sologon, Corneliu Gallegos, Hilma R. Weiss, Roy E. Ferreira, Tanira Memon, Abdul Paige, Peter G. Thomas, Emmanuel Andrews, David M. Viruses Article Over the course of the COVID-19 pandemic, SARS-CoV-2 variants of concern (VOCs) with increased transmissibility and immune escape capabilities, such as Delta and Omicron, have triggered waves of new COVID-19 infections worldwide, and Omicron subvariants continue to represent a global health concern. Tracking the prevalence and dynamics of VOCs has clinical and epidemiological significance and is essential for modeling the progression and evolution of the COVID-19 pandemic. Next generation sequencing (NGS) is recognized as the gold standard for genomic characterization of SARS-CoV-2 variants, but it is labor and cost intensive and not amenable to rapid lineage identification. Here we describe a two-pronged approach for rapid, cost-effective surveillance of SARS-CoV-2 VOCs by combining reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) and periodic NGS with the ARTIC sequencing method. Variant surveillance by RT-qPCR included the commercially available TaqPath COVID-19 Combo Kit to track S-gene target failure (SGTF) associated with the spike protein deletion H69-V70, as well as two internally designed and validated RT-qPCR assays targeting two N-terminal-domain (NTD) spike gene deletions, NTD156-7 and NTD25-7. The NTD156-7 RT-qPCR assay facilitated tracking of the Delta variant, while the NTD25-7 RT-qPCR assay was used for tracking Omicron variants, including the BA.2, BA.4, and BA.5 lineages. In silico validation of the NTD156-7 and NTD25-7 primers and probes compared with publicly available SARS-CoV-2 genome databases showed low variability in regions corresponding to oligonucleotide binding sites. Similarly, in vitro validation with NGS-confirmed samples showed excellent correlation. RT-qPCR assays allow for near-real-time monitoring of circulating and emerging variants allowing for ongoing surveillance of variant dynamics in a local population. By performing periodic sequencing of variant surveillance by RT-qPCR methods, we were able to provide ongoing validation of the results obtained by RT-qPCR screening. Rapid SARS-CoV-2 variant identification and surveillance by this combined approach served to inform clinical decisions in a timely manner and permitted better utilization of sequencing resources. MDPI 2023-02-21 /pmc/articles/PMC10059866/ /pubmed/36992302 http://dx.doi.org/10.3390/v15030593 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Carattini, Yamina L. Griswold, Anthony Williams, Sion Valiathan, Ranjini Zhou, Yi Shukla, Bhavarth Abbo, Lilian M. Parra, Katiuska Jorda, Merce Nimer, Stephen D. Sologon, Corneliu Gallegos, Hilma R. Weiss, Roy E. Ferreira, Tanira Memon, Abdul Paige, Peter G. Thomas, Emmanuel Andrews, David M. Combined Use of RT-qPCR and NGS for Identification and Surveillance of SARS-CoV-2 Variants of Concern in Residual Clinical Laboratory Samples in Miami-Dade County, Florida |
title | Combined Use of RT-qPCR and NGS for Identification and Surveillance of SARS-CoV-2 Variants of Concern in Residual Clinical Laboratory Samples in Miami-Dade County, Florida |
title_full | Combined Use of RT-qPCR and NGS for Identification and Surveillance of SARS-CoV-2 Variants of Concern in Residual Clinical Laboratory Samples in Miami-Dade County, Florida |
title_fullStr | Combined Use of RT-qPCR and NGS for Identification and Surveillance of SARS-CoV-2 Variants of Concern in Residual Clinical Laboratory Samples in Miami-Dade County, Florida |
title_full_unstemmed | Combined Use of RT-qPCR and NGS for Identification and Surveillance of SARS-CoV-2 Variants of Concern in Residual Clinical Laboratory Samples in Miami-Dade County, Florida |
title_short | Combined Use of RT-qPCR and NGS for Identification and Surveillance of SARS-CoV-2 Variants of Concern in Residual Clinical Laboratory Samples in Miami-Dade County, Florida |
title_sort | combined use of rt-qpcr and ngs for identification and surveillance of sars-cov-2 variants of concern in residual clinical laboratory samples in miami-dade county, florida |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059866/ https://www.ncbi.nlm.nih.gov/pubmed/36992302 http://dx.doi.org/10.3390/v15030593 |
work_keys_str_mv | AT carattiniyaminal combineduseofrtqpcrandngsforidentificationandsurveillanceofsarscov2variantsofconcerninresidualclinicallaboratorysamplesinmiamidadecountyflorida AT griswoldanthony combineduseofrtqpcrandngsforidentificationandsurveillanceofsarscov2variantsofconcerninresidualclinicallaboratorysamplesinmiamidadecountyflorida AT williamssion combineduseofrtqpcrandngsforidentificationandsurveillanceofsarscov2variantsofconcerninresidualclinicallaboratorysamplesinmiamidadecountyflorida AT valiathanranjini combineduseofrtqpcrandngsforidentificationandsurveillanceofsarscov2variantsofconcerninresidualclinicallaboratorysamplesinmiamidadecountyflorida AT zhouyi combineduseofrtqpcrandngsforidentificationandsurveillanceofsarscov2variantsofconcerninresidualclinicallaboratorysamplesinmiamidadecountyflorida AT shuklabhavarth combineduseofrtqpcrandngsforidentificationandsurveillanceofsarscov2variantsofconcerninresidualclinicallaboratorysamplesinmiamidadecountyflorida AT abbolilianm combineduseofrtqpcrandngsforidentificationandsurveillanceofsarscov2variantsofconcerninresidualclinicallaboratorysamplesinmiamidadecountyflorida AT parrakatiuska combineduseofrtqpcrandngsforidentificationandsurveillanceofsarscov2variantsofconcerninresidualclinicallaboratorysamplesinmiamidadecountyflorida AT jordamerce combineduseofrtqpcrandngsforidentificationandsurveillanceofsarscov2variantsofconcerninresidualclinicallaboratorysamplesinmiamidadecountyflorida AT nimerstephend combineduseofrtqpcrandngsforidentificationandsurveillanceofsarscov2variantsofconcerninresidualclinicallaboratorysamplesinmiamidadecountyflorida AT sologoncorneliu combineduseofrtqpcrandngsforidentificationandsurveillanceofsarscov2variantsofconcerninresidualclinicallaboratorysamplesinmiamidadecountyflorida AT gallegoshilmar combineduseofrtqpcrandngsforidentificationandsurveillanceofsarscov2variantsofconcerninresidualclinicallaboratorysamplesinmiamidadecountyflorida AT weissroye combineduseofrtqpcrandngsforidentificationandsurveillanceofsarscov2variantsofconcerninresidualclinicallaboratorysamplesinmiamidadecountyflorida AT ferreiratanira combineduseofrtqpcrandngsforidentificationandsurveillanceofsarscov2variantsofconcerninresidualclinicallaboratorysamplesinmiamidadecountyflorida AT memonabdul combineduseofrtqpcrandngsforidentificationandsurveillanceofsarscov2variantsofconcerninresidualclinicallaboratorysamplesinmiamidadecountyflorida AT paigepeterg combineduseofrtqpcrandngsforidentificationandsurveillanceofsarscov2variantsofconcerninresidualclinicallaboratorysamplesinmiamidadecountyflorida AT thomasemmanuel combineduseofrtqpcrandngsforidentificationandsurveillanceofsarscov2variantsofconcerninresidualclinicallaboratorysamplesinmiamidadecountyflorida AT andrewsdavidm combineduseofrtqpcrandngsforidentificationandsurveillanceofsarscov2variantsofconcerninresidualclinicallaboratorysamplesinmiamidadecountyflorida |