Cargando…

Insights into the Fe(3+) Doping Effects on the Structure and Electron Distribution of Cr(2)O(3) Nanoparticles

Herein, we carefully investigated the Fe(3+) doping effects on the structure and electron distribution of Cr(2)O(3) nanoparticles using X-ray diffraction analysis (XRD), maximum entropy method (MEM), and density functional theory (DFT) calculations. We showed that increasing the Fe doping induces an...

Descripción completa

Detalles Bibliográficos
Autores principales: Santos, Cledson, Attah-Baah, John M., Junior, Romualdo S. Silva, Mâcedo, Marcelo A., Rezende, Marcos V. S., Matos, Robert S., Ţălu, Ştefan, Trong, Dung Nguyen, da Paz, Simone P. A., Angélica, Rômulo S., Ferreira, Nilson S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059910/
https://www.ncbi.nlm.nih.gov/pubmed/36985876
http://dx.doi.org/10.3390/nano13060980
_version_ 1785016988320399360
author Santos, Cledson
Attah-Baah, John M.
Junior, Romualdo S. Silva
Mâcedo, Marcelo A.
Rezende, Marcos V. S.
Matos, Robert S.
Ţălu, Ştefan
Trong, Dung Nguyen
da Paz, Simone P. A.
Angélica, Rômulo S.
Ferreira, Nilson S.
author_facet Santos, Cledson
Attah-Baah, John M.
Junior, Romualdo S. Silva
Mâcedo, Marcelo A.
Rezende, Marcos V. S.
Matos, Robert S.
Ţălu, Ştefan
Trong, Dung Nguyen
da Paz, Simone P. A.
Angélica, Rômulo S.
Ferreira, Nilson S.
author_sort Santos, Cledson
collection PubMed
description Herein, we carefully investigated the Fe(3+) doping effects on the structure and electron distribution of Cr(2)O(3) nanoparticles using X-ray diffraction analysis (XRD), maximum entropy method (MEM), and density functional theory (DFT) calculations. We showed that increasing the Fe doping induces an enlargement in the axial ratio of c/a, which is associated with an anisotropic expansion of the unit cell. We found that as Fe(3+) replaces Cr in the Cr(2)O(3) lattice, it caused a higher interaction between the metal 3d states and the oxygen 2p states, which led to a slight increase in the Cr/Fe–O1 bond length followed by an opposite effect for the Cr/Fe–O2 bonds. Our results also suggest that the excitations characterize a well-localized bandgap region from occupied Cr d to unoccupied Fe d states. The Cr(2)O(3) and Fe-doped Cr(2)O(3) nanoparticles behave as Mott–Hubbard insulators due to their band gap being in the d−d gap, and Cr 3d orbitals dominate the conduction band. These findings suggest that the magnitude and the character of the electronic density near the O atom bonds in Cr(2)O(3) nanoparticles are modulated by the Cr–Cr distances until its stabilization at the induced quasi-equilibrium of the Cr(2)O(3) lattice when the Fe(3+) doping values reaches the saturation level range.
format Online
Article
Text
id pubmed-10059910
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-100599102023-03-30 Insights into the Fe(3+) Doping Effects on the Structure and Electron Distribution of Cr(2)O(3) Nanoparticles Santos, Cledson Attah-Baah, John M. Junior, Romualdo S. Silva Mâcedo, Marcelo A. Rezende, Marcos V. S. Matos, Robert S. Ţălu, Ştefan Trong, Dung Nguyen da Paz, Simone P. A. Angélica, Rômulo S. Ferreira, Nilson S. Nanomaterials (Basel) Article Herein, we carefully investigated the Fe(3+) doping effects on the structure and electron distribution of Cr(2)O(3) nanoparticles using X-ray diffraction analysis (XRD), maximum entropy method (MEM), and density functional theory (DFT) calculations. We showed that increasing the Fe doping induces an enlargement in the axial ratio of c/a, which is associated with an anisotropic expansion of the unit cell. We found that as Fe(3+) replaces Cr in the Cr(2)O(3) lattice, it caused a higher interaction between the metal 3d states and the oxygen 2p states, which led to a slight increase in the Cr/Fe–O1 bond length followed by an opposite effect for the Cr/Fe–O2 bonds. Our results also suggest that the excitations characterize a well-localized bandgap region from occupied Cr d to unoccupied Fe d states. The Cr(2)O(3) and Fe-doped Cr(2)O(3) nanoparticles behave as Mott–Hubbard insulators due to their band gap being in the d−d gap, and Cr 3d orbitals dominate the conduction band. These findings suggest that the magnitude and the character of the electronic density near the O atom bonds in Cr(2)O(3) nanoparticles are modulated by the Cr–Cr distances until its stabilization at the induced quasi-equilibrium of the Cr(2)O(3) lattice when the Fe(3+) doping values reaches the saturation level range. MDPI 2023-03-08 /pmc/articles/PMC10059910/ /pubmed/36985876 http://dx.doi.org/10.3390/nano13060980 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Santos, Cledson
Attah-Baah, John M.
Junior, Romualdo S. Silva
Mâcedo, Marcelo A.
Rezende, Marcos V. S.
Matos, Robert S.
Ţălu, Ştefan
Trong, Dung Nguyen
da Paz, Simone P. A.
Angélica, Rômulo S.
Ferreira, Nilson S.
Insights into the Fe(3+) Doping Effects on the Structure and Electron Distribution of Cr(2)O(3) Nanoparticles
title Insights into the Fe(3+) Doping Effects on the Structure and Electron Distribution of Cr(2)O(3) Nanoparticles
title_full Insights into the Fe(3+) Doping Effects on the Structure and Electron Distribution of Cr(2)O(3) Nanoparticles
title_fullStr Insights into the Fe(3+) Doping Effects on the Structure and Electron Distribution of Cr(2)O(3) Nanoparticles
title_full_unstemmed Insights into the Fe(3+) Doping Effects on the Structure and Electron Distribution of Cr(2)O(3) Nanoparticles
title_short Insights into the Fe(3+) Doping Effects on the Structure and Electron Distribution of Cr(2)O(3) Nanoparticles
title_sort insights into the fe(3+) doping effects on the structure and electron distribution of cr(2)o(3) nanoparticles
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059910/
https://www.ncbi.nlm.nih.gov/pubmed/36985876
http://dx.doi.org/10.3390/nano13060980
work_keys_str_mv AT santoscledson insightsintothefe3dopingeffectsonthestructureandelectrondistributionofcr2o3nanoparticles
AT attahbaahjohnm insightsintothefe3dopingeffectsonthestructureandelectrondistributionofcr2o3nanoparticles
AT juniorromualdossilva insightsintothefe3dopingeffectsonthestructureandelectrondistributionofcr2o3nanoparticles
AT macedomarceloa insightsintothefe3dopingeffectsonthestructureandelectrondistributionofcr2o3nanoparticles
AT rezendemarcosvs insightsintothefe3dopingeffectsonthestructureandelectrondistributionofcr2o3nanoparticles
AT matosroberts insightsintothefe3dopingeffectsonthestructureandelectrondistributionofcr2o3nanoparticles
AT talustefan insightsintothefe3dopingeffectsonthestructureandelectrondistributionofcr2o3nanoparticles
AT trongdungnguyen insightsintothefe3dopingeffectsonthestructureandelectrondistributionofcr2o3nanoparticles
AT dapazsimonepa insightsintothefe3dopingeffectsonthestructureandelectrondistributionofcr2o3nanoparticles
AT angelicaromulos insightsintothefe3dopingeffectsonthestructureandelectrondistributionofcr2o3nanoparticles
AT ferreiranilsons insightsintothefe3dopingeffectsonthestructureandelectrondistributionofcr2o3nanoparticles