Cargando…

Ultramicro Interdigitated Array Electrode Chip with Optimized Construction for Detection of Ammonia Nitrogen in Water

Ammonia nitrogen is a common contaminant in water and its determination is important for environmental protection. In this paper, an electrochemical sensor based on an ultramicro interdigitated array electrode (UIAE) chip with optimized construction was fabricated with Micro-Electro-Mechanical Syste...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Haifei, Li, Yang, Cong, Aobo, Tong, Jianhua, Bian, Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059921/
https://www.ncbi.nlm.nih.gov/pubmed/36985036
http://dx.doi.org/10.3390/mi14030629
Descripción
Sumario:Ammonia nitrogen is a common contaminant in water and its determination is important for environmental protection. In this paper, an electrochemical sensor based on an ultramicro interdigitated array electrode (UIAE) chip with optimized construction was fabricated with Micro-Electro-Mechanical System (MEMS) technology and developed to realize the detection of ammonia nitrogen in water. The effects of spacing-to-width ratio and width of the working electrode on UIAE’s electrochemical characteristics and its ammonia nitrogen detection performance were studied by finite element simulation and experiment. The results demonstrated that the smaller the spacing-to-width ratio, the stronger generation–collection effect, and the smaller the electrode width, the stronger the edge effect, which led to an easier steady-state reach, a higher response current, and better ammonia nitrogen determination performance. The fabricated UIAE chip with optimized construction showed the linear detection range of 0.15 mg/L~2.0 mg/L (calculated as N), the sensitivity of 0.4181 μA·L·mg(−1), and good anti-interference performance, as well as a long lifetime. UIAE based on bare Pt was successfully applied to ammonia nitrogen detection in water by optimizing structure, which might broaden the methods of ammonia nitrogen detection in water.