Cargando…
Pseudo-document simulation for comparing LDA, GSDMM and GPM topic models on short and sparse text using Twitter data
Topic models are a useful and popular method to find latent topics of documents. However, the short and sparse texts in social media micro-blogs such as Twitter are challenging for the most commonly used Latent Dirichlet Allocation (LDA) topic model. We compare the performance of the standard LDA to...
Autores principales: | Weisser, Christoph, Gerloff, Christoph, Thielmann, Anton, Python, Andre, Reuter, Arik, Kneib, Thomas, Säfken, Benjamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060035/ https://www.ncbi.nlm.nih.gov/pubmed/37223721 http://dx.doi.org/10.1007/s00180-022-01246-z |
Ejemplares similares
-
An iterative topic model filtering framework for short and noisy user-generated data: analyzing conspiracy theories on twitter
por: Kant, Gillian, et al.
Publicado: (2022) -
Supporting systematic reviews using LDA-based document representations
por: Mo, Yuanhan, et al.
Publicado: (2015) -
Application Software on the GPM
por: Bulfone, D, et al.
Publicado: (1987) -
Using RTF Fortran Compiler on the GPM
por: Hooper, J
Publicado: (1986) -
A Topic Modeling Comparison Between LDA, NMF, Top2Vec, and BERTopic to Demystify Twitter Posts
por: Egger, Roman, et al.
Publicado: (2022)