Cargando…

Ultrafast structural changes direct the first molecular events of vision

Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs)(1). A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation(2), thereby initiating the cellular signal transduction p...

Descripción completa

Detalles Bibliográficos
Autores principales: Gruhl, Thomas, Weinert, Tobias, Rodrigues, Matthew J., Milne, Christopher J., Ortolani, Giorgia, Nass, Karol, Nango, Eriko, Sen, Saumik, Johnson, Philip J. M., Cirelli, Claudio, Furrer, Antonia, Mous, Sandra, Skopintsev, Petr, James, Daniel, Dworkowski, Florian, Båth, Petra, Kekilli, Demet, Ozerov, Dmitry, Tanaka, Rie, Glover, Hannah, Bacellar, Camila, Brünle, Steffen, Casadei, Cecilia M., Diethelm, Azeglio D., Gashi, Dardan, Gotthard, Guillaume, Guixà-González, Ramon, Joti, Yasumasa, Kabanova, Victoria, Knopp, Gregor, Lesca, Elena, Ma, Pikyee, Martiel, Isabelle, Mühle, Jonas, Owada, Shigeki, Pamula, Filip, Sarabi, Daniel, Tejero, Oliver, Tsai, Ching-Ju, Varma, Niranjan, Wach, Anna, Boutet, Sébastien, Tono, Kensuke, Nogly, Przemyslaw, Deupi, Xavier, Iwata, So, Neutze, Richard, Standfuss, Jörg, Schertler, Gebhard, Panneels, Valerie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060157/
https://www.ncbi.nlm.nih.gov/pubmed/36949205
http://dx.doi.org/10.1038/s41586-023-05863-6
_version_ 1785017043465011200
author Gruhl, Thomas
Weinert, Tobias
Rodrigues, Matthew J.
Milne, Christopher J.
Ortolani, Giorgia
Nass, Karol
Nango, Eriko
Sen, Saumik
Johnson, Philip J. M.
Cirelli, Claudio
Furrer, Antonia
Mous, Sandra
Skopintsev, Petr
James, Daniel
Dworkowski, Florian
Båth, Petra
Kekilli, Demet
Ozerov, Dmitry
Tanaka, Rie
Glover, Hannah
Bacellar, Camila
Brünle, Steffen
Casadei, Cecilia M.
Diethelm, Azeglio D.
Gashi, Dardan
Gotthard, Guillaume
Guixà-González, Ramon
Joti, Yasumasa
Kabanova, Victoria
Knopp, Gregor
Lesca, Elena
Ma, Pikyee
Martiel, Isabelle
Mühle, Jonas
Owada, Shigeki
Pamula, Filip
Sarabi, Daniel
Tejero, Oliver
Tsai, Ching-Ju
Varma, Niranjan
Wach, Anna
Boutet, Sébastien
Tono, Kensuke
Nogly, Przemyslaw
Deupi, Xavier
Iwata, So
Neutze, Richard
Standfuss, Jörg
Schertler, Gebhard
Panneels, Valerie
author_facet Gruhl, Thomas
Weinert, Tobias
Rodrigues, Matthew J.
Milne, Christopher J.
Ortolani, Giorgia
Nass, Karol
Nango, Eriko
Sen, Saumik
Johnson, Philip J. M.
Cirelli, Claudio
Furrer, Antonia
Mous, Sandra
Skopintsev, Petr
James, Daniel
Dworkowski, Florian
Båth, Petra
Kekilli, Demet
Ozerov, Dmitry
Tanaka, Rie
Glover, Hannah
Bacellar, Camila
Brünle, Steffen
Casadei, Cecilia M.
Diethelm, Azeglio D.
Gashi, Dardan
Gotthard, Guillaume
Guixà-González, Ramon
Joti, Yasumasa
Kabanova, Victoria
Knopp, Gregor
Lesca, Elena
Ma, Pikyee
Martiel, Isabelle
Mühle, Jonas
Owada, Shigeki
Pamula, Filip
Sarabi, Daniel
Tejero, Oliver
Tsai, Ching-Ju
Varma, Niranjan
Wach, Anna
Boutet, Sébastien
Tono, Kensuke
Nogly, Przemyslaw
Deupi, Xavier
Iwata, So
Neutze, Richard
Standfuss, Jörg
Schertler, Gebhard
Panneels, Valerie
author_sort Gruhl, Thomas
collection PubMed
description Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs)(1). A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation(2), thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature(3) to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation.
format Online
Article
Text
id pubmed-10060157
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-100601572023-03-31 Ultrafast structural changes direct the first molecular events of vision Gruhl, Thomas Weinert, Tobias Rodrigues, Matthew J. Milne, Christopher J. Ortolani, Giorgia Nass, Karol Nango, Eriko Sen, Saumik Johnson, Philip J. M. Cirelli, Claudio Furrer, Antonia Mous, Sandra Skopintsev, Petr James, Daniel Dworkowski, Florian Båth, Petra Kekilli, Demet Ozerov, Dmitry Tanaka, Rie Glover, Hannah Bacellar, Camila Brünle, Steffen Casadei, Cecilia M. Diethelm, Azeglio D. Gashi, Dardan Gotthard, Guillaume Guixà-González, Ramon Joti, Yasumasa Kabanova, Victoria Knopp, Gregor Lesca, Elena Ma, Pikyee Martiel, Isabelle Mühle, Jonas Owada, Shigeki Pamula, Filip Sarabi, Daniel Tejero, Oliver Tsai, Ching-Ju Varma, Niranjan Wach, Anna Boutet, Sébastien Tono, Kensuke Nogly, Przemyslaw Deupi, Xavier Iwata, So Neutze, Richard Standfuss, Jörg Schertler, Gebhard Panneels, Valerie Nature Article Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs)(1). A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation(2), thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature(3) to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation. Nature Publishing Group UK 2023-03-22 2023 /pmc/articles/PMC10060157/ /pubmed/36949205 http://dx.doi.org/10.1038/s41586-023-05863-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Gruhl, Thomas
Weinert, Tobias
Rodrigues, Matthew J.
Milne, Christopher J.
Ortolani, Giorgia
Nass, Karol
Nango, Eriko
Sen, Saumik
Johnson, Philip J. M.
Cirelli, Claudio
Furrer, Antonia
Mous, Sandra
Skopintsev, Petr
James, Daniel
Dworkowski, Florian
Båth, Petra
Kekilli, Demet
Ozerov, Dmitry
Tanaka, Rie
Glover, Hannah
Bacellar, Camila
Brünle, Steffen
Casadei, Cecilia M.
Diethelm, Azeglio D.
Gashi, Dardan
Gotthard, Guillaume
Guixà-González, Ramon
Joti, Yasumasa
Kabanova, Victoria
Knopp, Gregor
Lesca, Elena
Ma, Pikyee
Martiel, Isabelle
Mühle, Jonas
Owada, Shigeki
Pamula, Filip
Sarabi, Daniel
Tejero, Oliver
Tsai, Ching-Ju
Varma, Niranjan
Wach, Anna
Boutet, Sébastien
Tono, Kensuke
Nogly, Przemyslaw
Deupi, Xavier
Iwata, So
Neutze, Richard
Standfuss, Jörg
Schertler, Gebhard
Panneels, Valerie
Ultrafast structural changes direct the first molecular events of vision
title Ultrafast structural changes direct the first molecular events of vision
title_full Ultrafast structural changes direct the first molecular events of vision
title_fullStr Ultrafast structural changes direct the first molecular events of vision
title_full_unstemmed Ultrafast structural changes direct the first molecular events of vision
title_short Ultrafast structural changes direct the first molecular events of vision
title_sort ultrafast structural changes direct the first molecular events of vision
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060157/
https://www.ncbi.nlm.nih.gov/pubmed/36949205
http://dx.doi.org/10.1038/s41586-023-05863-6
work_keys_str_mv AT gruhlthomas ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT weinerttobias ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT rodriguesmatthewj ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT milnechristopherj ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT ortolanigiorgia ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT nasskarol ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT nangoeriko ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT sensaumik ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT johnsonphilipjm ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT cirelliclaudio ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT furrerantonia ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT moussandra ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT skopintsevpetr ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT jamesdaniel ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT dworkowskiflorian ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT bathpetra ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT kekillidemet ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT ozerovdmitry ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT tanakarie ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT gloverhannah ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT bacellarcamila ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT brunlesteffen ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT casadeiceciliam ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT diethelmazegliod ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT gashidardan ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT gotthardguillaume ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT guixagonzalezramon ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT jotiyasumasa ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT kabanovavictoria ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT knoppgregor ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT lescaelena ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT mapikyee ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT martielisabelle ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT muhlejonas ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT owadashigeki ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT pamulafilip ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT sarabidaniel ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT tejerooliver ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT tsaichingju ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT varmaniranjan ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT wachanna ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT boutetsebastien ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT tonokensuke ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT noglyprzemyslaw ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT deupixavier ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT iwataso ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT neutzerichard ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT standfussjorg ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT schertlergebhard ultrafaststructuralchangesdirectthefirstmoleculareventsofvision
AT panneelsvalerie ultrafaststructuralchangesdirectthefirstmoleculareventsofvision