Cargando…

Universal logic with encoded spin qubits in silicon

Quantum computation features known examples of hardware acceleration for certain problems, but is challenging to realize because of its susceptibility to small errors from noise or imperfect control. The principles of fault tolerance may enable computational acceleration with imperfect hardware, but...

Descripción completa

Detalles Bibliográficos
Autores principales: Weinstein, Aaron J., Reed, Matthew D., Jones, Aaron M., Andrews, Reed W., Barnes, David, Blumoff, Jacob Z., Euliss, Larken E., Eng, Kevin, Fong, Bryan H., Ha, Sieu D., Hulbert, Daniel R., Jackson, Clayton A. C., Jura, Michael, Keating, Tyler E., Kerckhoff, Joseph, Kiselev, Andrey A., Matten, Justine, Sabbir, Golam, Smith, Aaron, Wright, Jeffrey, Rakher, Matthew T., Ladd, Thaddeus D., Borselli, Matthew G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060158/
https://www.ncbi.nlm.nih.gov/pubmed/36746190
http://dx.doi.org/10.1038/s41586-023-05777-3
_version_ 1785017043700940800
author Weinstein, Aaron J.
Reed, Matthew D.
Jones, Aaron M.
Andrews, Reed W.
Barnes, David
Blumoff, Jacob Z.
Euliss, Larken E.
Eng, Kevin
Fong, Bryan H.
Ha, Sieu D.
Hulbert, Daniel R.
Jackson, Clayton A. C.
Jura, Michael
Keating, Tyler E.
Kerckhoff, Joseph
Kiselev, Andrey A.
Matten, Justine
Sabbir, Golam
Smith, Aaron
Wright, Jeffrey
Rakher, Matthew T.
Ladd, Thaddeus D.
Borselli, Matthew G.
author_facet Weinstein, Aaron J.
Reed, Matthew D.
Jones, Aaron M.
Andrews, Reed W.
Barnes, David
Blumoff, Jacob Z.
Euliss, Larken E.
Eng, Kevin
Fong, Bryan H.
Ha, Sieu D.
Hulbert, Daniel R.
Jackson, Clayton A. C.
Jura, Michael
Keating, Tyler E.
Kerckhoff, Joseph
Kiselev, Andrey A.
Matten, Justine
Sabbir, Golam
Smith, Aaron
Wright, Jeffrey
Rakher, Matthew T.
Ladd, Thaddeus D.
Borselli, Matthew G.
author_sort Weinstein, Aaron J.
collection PubMed
description Quantum computation features known examples of hardware acceleration for certain problems, but is challenging to realize because of its susceptibility to small errors from noise or imperfect control. The principles of fault tolerance may enable computational acceleration with imperfect hardware, but they place strict requirements on the character and correlation of errors(1). For many qubit technologies(2–21), some challenges to achieving fault tolerance can be traced to correlated errors arising from the need to control qubits by injecting microwave energy matching qubit resonances. Here we demonstrate an alternative approach to quantum computation that uses energy-degenerate encoded qubit states controlled by nearest-neighbour contact interactions that partially swap the spin states of electrons with those of their neighbours. Calibrated sequences of such partial swaps, implemented using only voltage pulses, allow universal quantum control while bypassing microwave-associated correlated error sources(1,22–28). We use an array of six (28)Si/SiGe quantum dots, built using a platform that is capable of extending in two dimensions following processes used in conventional microelectronics(29). We quantify the operational fidelity of universal control of two encoded qubits using interleaved randomized benchmarking(30), finding a fidelity of 96.3% ± 0.7% for encoded controlled NOT operations and 99.3% ± 0.5% for encoded SWAP. The quantum coherence offered by enriched silicon(5–9,16,18,20,22,27,29,31–37), the all-electrical and low-crosstalk-control of partial swap operations(1,22–28) and the configurable insensitivity of our encoding to certain error sources(28,33,34,38) all combine to offer a strong pathway towards scalable fault tolerance and computational advantage.
format Online
Article
Text
id pubmed-10060158
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-100601582023-03-31 Universal logic with encoded spin qubits in silicon Weinstein, Aaron J. Reed, Matthew D. Jones, Aaron M. Andrews, Reed W. Barnes, David Blumoff, Jacob Z. Euliss, Larken E. Eng, Kevin Fong, Bryan H. Ha, Sieu D. Hulbert, Daniel R. Jackson, Clayton A. C. Jura, Michael Keating, Tyler E. Kerckhoff, Joseph Kiselev, Andrey A. Matten, Justine Sabbir, Golam Smith, Aaron Wright, Jeffrey Rakher, Matthew T. Ladd, Thaddeus D. Borselli, Matthew G. Nature Article Quantum computation features known examples of hardware acceleration for certain problems, but is challenging to realize because of its susceptibility to small errors from noise or imperfect control. The principles of fault tolerance may enable computational acceleration with imperfect hardware, but they place strict requirements on the character and correlation of errors(1). For many qubit technologies(2–21), some challenges to achieving fault tolerance can be traced to correlated errors arising from the need to control qubits by injecting microwave energy matching qubit resonances. Here we demonstrate an alternative approach to quantum computation that uses energy-degenerate encoded qubit states controlled by nearest-neighbour contact interactions that partially swap the spin states of electrons with those of their neighbours. Calibrated sequences of such partial swaps, implemented using only voltage pulses, allow universal quantum control while bypassing microwave-associated correlated error sources(1,22–28). We use an array of six (28)Si/SiGe quantum dots, built using a platform that is capable of extending in two dimensions following processes used in conventional microelectronics(29). We quantify the operational fidelity of universal control of two encoded qubits using interleaved randomized benchmarking(30), finding a fidelity of 96.3% ± 0.7% for encoded controlled NOT operations and 99.3% ± 0.5% for encoded SWAP. The quantum coherence offered by enriched silicon(5–9,16,18,20,22,27,29,31–37), the all-electrical and low-crosstalk-control of partial swap operations(1,22–28) and the configurable insensitivity of our encoding to certain error sources(28,33,34,38) all combine to offer a strong pathway towards scalable fault tolerance and computational advantage. Nature Publishing Group UK 2023-02-06 2023 /pmc/articles/PMC10060158/ /pubmed/36746190 http://dx.doi.org/10.1038/s41586-023-05777-3 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Weinstein, Aaron J.
Reed, Matthew D.
Jones, Aaron M.
Andrews, Reed W.
Barnes, David
Blumoff, Jacob Z.
Euliss, Larken E.
Eng, Kevin
Fong, Bryan H.
Ha, Sieu D.
Hulbert, Daniel R.
Jackson, Clayton A. C.
Jura, Michael
Keating, Tyler E.
Kerckhoff, Joseph
Kiselev, Andrey A.
Matten, Justine
Sabbir, Golam
Smith, Aaron
Wright, Jeffrey
Rakher, Matthew T.
Ladd, Thaddeus D.
Borselli, Matthew G.
Universal logic with encoded spin qubits in silicon
title Universal logic with encoded spin qubits in silicon
title_full Universal logic with encoded spin qubits in silicon
title_fullStr Universal logic with encoded spin qubits in silicon
title_full_unstemmed Universal logic with encoded spin qubits in silicon
title_short Universal logic with encoded spin qubits in silicon
title_sort universal logic with encoded spin qubits in silicon
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060158/
https://www.ncbi.nlm.nih.gov/pubmed/36746190
http://dx.doi.org/10.1038/s41586-023-05777-3
work_keys_str_mv AT weinsteinaaronj universallogicwithencodedspinqubitsinsilicon
AT reedmatthewd universallogicwithencodedspinqubitsinsilicon
AT jonesaaronm universallogicwithencodedspinqubitsinsilicon
AT andrewsreedw universallogicwithencodedspinqubitsinsilicon
AT barnesdavid universallogicwithencodedspinqubitsinsilicon
AT blumoffjacobz universallogicwithencodedspinqubitsinsilicon
AT eulisslarkene universallogicwithencodedspinqubitsinsilicon
AT engkevin universallogicwithencodedspinqubitsinsilicon
AT fongbryanh universallogicwithencodedspinqubitsinsilicon
AT hasieud universallogicwithencodedspinqubitsinsilicon
AT hulbertdanielr universallogicwithencodedspinqubitsinsilicon
AT jacksonclaytonac universallogicwithencodedspinqubitsinsilicon
AT juramichael universallogicwithencodedspinqubitsinsilicon
AT keatingtylere universallogicwithencodedspinqubitsinsilicon
AT kerckhoffjoseph universallogicwithencodedspinqubitsinsilicon
AT kiselevandreya universallogicwithencodedspinqubitsinsilicon
AT mattenjustine universallogicwithencodedspinqubitsinsilicon
AT sabbirgolam universallogicwithencodedspinqubitsinsilicon
AT smithaaron universallogicwithencodedspinqubitsinsilicon
AT wrightjeffrey universallogicwithencodedspinqubitsinsilicon
AT rakhermatthewt universallogicwithencodedspinqubitsinsilicon
AT laddthaddeusd universallogicwithencodedspinqubitsinsilicon
AT borsellimatthewg universallogicwithencodedspinqubitsinsilicon