Cargando…
Universal logic with encoded spin qubits in silicon
Quantum computation features known examples of hardware acceleration for certain problems, but is challenging to realize because of its susceptibility to small errors from noise or imperfect control. The principles of fault tolerance may enable computational acceleration with imperfect hardware, but...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060158/ https://www.ncbi.nlm.nih.gov/pubmed/36746190 http://dx.doi.org/10.1038/s41586-023-05777-3 |
_version_ | 1785017043700940800 |
---|---|
author | Weinstein, Aaron J. Reed, Matthew D. Jones, Aaron M. Andrews, Reed W. Barnes, David Blumoff, Jacob Z. Euliss, Larken E. Eng, Kevin Fong, Bryan H. Ha, Sieu D. Hulbert, Daniel R. Jackson, Clayton A. C. Jura, Michael Keating, Tyler E. Kerckhoff, Joseph Kiselev, Andrey A. Matten, Justine Sabbir, Golam Smith, Aaron Wright, Jeffrey Rakher, Matthew T. Ladd, Thaddeus D. Borselli, Matthew G. |
author_facet | Weinstein, Aaron J. Reed, Matthew D. Jones, Aaron M. Andrews, Reed W. Barnes, David Blumoff, Jacob Z. Euliss, Larken E. Eng, Kevin Fong, Bryan H. Ha, Sieu D. Hulbert, Daniel R. Jackson, Clayton A. C. Jura, Michael Keating, Tyler E. Kerckhoff, Joseph Kiselev, Andrey A. Matten, Justine Sabbir, Golam Smith, Aaron Wright, Jeffrey Rakher, Matthew T. Ladd, Thaddeus D. Borselli, Matthew G. |
author_sort | Weinstein, Aaron J. |
collection | PubMed |
description | Quantum computation features known examples of hardware acceleration for certain problems, but is challenging to realize because of its susceptibility to small errors from noise or imperfect control. The principles of fault tolerance may enable computational acceleration with imperfect hardware, but they place strict requirements on the character and correlation of errors(1). For many qubit technologies(2–21), some challenges to achieving fault tolerance can be traced to correlated errors arising from the need to control qubits by injecting microwave energy matching qubit resonances. Here we demonstrate an alternative approach to quantum computation that uses energy-degenerate encoded qubit states controlled by nearest-neighbour contact interactions that partially swap the spin states of electrons with those of their neighbours. Calibrated sequences of such partial swaps, implemented using only voltage pulses, allow universal quantum control while bypassing microwave-associated correlated error sources(1,22–28). We use an array of six (28)Si/SiGe quantum dots, built using a platform that is capable of extending in two dimensions following processes used in conventional microelectronics(29). We quantify the operational fidelity of universal control of two encoded qubits using interleaved randomized benchmarking(30), finding a fidelity of 96.3% ± 0.7% for encoded controlled NOT operations and 99.3% ± 0.5% for encoded SWAP. The quantum coherence offered by enriched silicon(5–9,16,18,20,22,27,29,31–37), the all-electrical and low-crosstalk-control of partial swap operations(1,22–28) and the configurable insensitivity of our encoding to certain error sources(28,33,34,38) all combine to offer a strong pathway towards scalable fault tolerance and computational advantage. |
format | Online Article Text |
id | pubmed-10060158 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-100601582023-03-31 Universal logic with encoded spin qubits in silicon Weinstein, Aaron J. Reed, Matthew D. Jones, Aaron M. Andrews, Reed W. Barnes, David Blumoff, Jacob Z. Euliss, Larken E. Eng, Kevin Fong, Bryan H. Ha, Sieu D. Hulbert, Daniel R. Jackson, Clayton A. C. Jura, Michael Keating, Tyler E. Kerckhoff, Joseph Kiselev, Andrey A. Matten, Justine Sabbir, Golam Smith, Aaron Wright, Jeffrey Rakher, Matthew T. Ladd, Thaddeus D. Borselli, Matthew G. Nature Article Quantum computation features known examples of hardware acceleration for certain problems, but is challenging to realize because of its susceptibility to small errors from noise or imperfect control. The principles of fault tolerance may enable computational acceleration with imperfect hardware, but they place strict requirements on the character and correlation of errors(1). For many qubit technologies(2–21), some challenges to achieving fault tolerance can be traced to correlated errors arising from the need to control qubits by injecting microwave energy matching qubit resonances. Here we demonstrate an alternative approach to quantum computation that uses energy-degenerate encoded qubit states controlled by nearest-neighbour contact interactions that partially swap the spin states of electrons with those of their neighbours. Calibrated sequences of such partial swaps, implemented using only voltage pulses, allow universal quantum control while bypassing microwave-associated correlated error sources(1,22–28). We use an array of six (28)Si/SiGe quantum dots, built using a platform that is capable of extending in two dimensions following processes used in conventional microelectronics(29). We quantify the operational fidelity of universal control of two encoded qubits using interleaved randomized benchmarking(30), finding a fidelity of 96.3% ± 0.7% for encoded controlled NOT operations and 99.3% ± 0.5% for encoded SWAP. The quantum coherence offered by enriched silicon(5–9,16,18,20,22,27,29,31–37), the all-electrical and low-crosstalk-control of partial swap operations(1,22–28) and the configurable insensitivity of our encoding to certain error sources(28,33,34,38) all combine to offer a strong pathway towards scalable fault tolerance and computational advantage. Nature Publishing Group UK 2023-02-06 2023 /pmc/articles/PMC10060158/ /pubmed/36746190 http://dx.doi.org/10.1038/s41586-023-05777-3 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Weinstein, Aaron J. Reed, Matthew D. Jones, Aaron M. Andrews, Reed W. Barnes, David Blumoff, Jacob Z. Euliss, Larken E. Eng, Kevin Fong, Bryan H. Ha, Sieu D. Hulbert, Daniel R. Jackson, Clayton A. C. Jura, Michael Keating, Tyler E. Kerckhoff, Joseph Kiselev, Andrey A. Matten, Justine Sabbir, Golam Smith, Aaron Wright, Jeffrey Rakher, Matthew T. Ladd, Thaddeus D. Borselli, Matthew G. Universal logic with encoded spin qubits in silicon |
title | Universal logic with encoded spin qubits in silicon |
title_full | Universal logic with encoded spin qubits in silicon |
title_fullStr | Universal logic with encoded spin qubits in silicon |
title_full_unstemmed | Universal logic with encoded spin qubits in silicon |
title_short | Universal logic with encoded spin qubits in silicon |
title_sort | universal logic with encoded spin qubits in silicon |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060158/ https://www.ncbi.nlm.nih.gov/pubmed/36746190 http://dx.doi.org/10.1038/s41586-023-05777-3 |
work_keys_str_mv | AT weinsteinaaronj universallogicwithencodedspinqubitsinsilicon AT reedmatthewd universallogicwithencodedspinqubitsinsilicon AT jonesaaronm universallogicwithencodedspinqubitsinsilicon AT andrewsreedw universallogicwithencodedspinqubitsinsilicon AT barnesdavid universallogicwithencodedspinqubitsinsilicon AT blumoffjacobz universallogicwithencodedspinqubitsinsilicon AT eulisslarkene universallogicwithencodedspinqubitsinsilicon AT engkevin universallogicwithencodedspinqubitsinsilicon AT fongbryanh universallogicwithencodedspinqubitsinsilicon AT hasieud universallogicwithencodedspinqubitsinsilicon AT hulbertdanielr universallogicwithencodedspinqubitsinsilicon AT jacksonclaytonac universallogicwithencodedspinqubitsinsilicon AT juramichael universallogicwithencodedspinqubitsinsilicon AT keatingtylere universallogicwithencodedspinqubitsinsilicon AT kerckhoffjoseph universallogicwithencodedspinqubitsinsilicon AT kiselevandreya universallogicwithencodedspinqubitsinsilicon AT mattenjustine universallogicwithencodedspinqubitsinsilicon AT sabbirgolam universallogicwithencodedspinqubitsinsilicon AT smithaaron universallogicwithencodedspinqubitsinsilicon AT wrightjeffrey universallogicwithencodedspinqubitsinsilicon AT rakhermatthewt universallogicwithencodedspinqubitsinsilicon AT laddthaddeusd universallogicwithencodedspinqubitsinsilicon AT borsellimatthewg universallogicwithencodedspinqubitsinsilicon |